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Abstract. We present an algorithm and tool to convert derivations from
the powerful recently proposed PR proof system into the widely used
DRAT proof system. The PR proof system allows short proofs without
new variables for some hard problems, while the DRAT proof system is
supported by top-tier SAT solvers. Moreover, there exist efficient, for-
mally verified checkers of DRAT proofs. Thus our tool can be used to
validate PR proofs using these verified checkers. Our simulation algo-
rithm uses only one new Boolean variable and the size increase is at most
quadratic in the size of the propositional formula and the PR proof. The
approach is evaluated on short PR proofs of hard problems, including
the well-known pigeon-hole and Tseitin formulas. Applying our tool to
PR proofs of pigeon-hole formulas results in short DRAT proofs, linear
in size with respect to the size of the input formula, which have been
certified by a formally verified proof checker.

1 Introduction

Satisfiability (SAT) solvers are powerful tools for many applications in formal
methods and artificial intelligence [3,9]. Arguably the most effective new tech-
niques in recent years are based on inprocessing [21,25]: Interleaving preprocess-
ing techniques and conflict-driven clause learning (CDCL) [26]. Several powerful
inprocessing techniques, such as symmetry breaking [6,1] and blocked clause
addition [23], do not preserve logical equivalence and cannot be expressed com-
pactly using classical resolution proofs [30]. The RAT proof system [14] was
designed to express such techniques succinctly and facilitate efficient proof val-
idation. All top-tier SAT solvers support proof logging in the DRAT proof sys-
tem [12], which extends the RAT proof system with clause deletion.

More recently a ground-breaking paper [8] presented at TACAS’17 showed
how to efficiently certify huge propositional proofs of unsatisfiability by proof
checkers, which are formally verified by theorem provers, such as ACL2 [7],
Coq [8,7], and Isabelle/HOL [24]. These developments are clearly a break-through
in SAT solving. They allow us to have the same trust in the correctness of the re-
sults produced by a highly tuned state-of-the-art SAT solver as into those claims
deduced with proof producing theorem provers. We can now use SAT solvers as
part of such fully trusted proof generating systems.
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On the other hand, with even more powerful proof systems we can produce
even smaller proofs. The goal in increasing the power of proof systems is to
cover additional not yet covered but existing reasoning techniques compactly,
e.g., algebraic reasoning, but also to provide a framework for investigating new
inprocessing techniques. If proofs are required, then this is a necessary condition
for solving certain formulas faster. However it makes proof checking more chal-
lenging. The recently proposed PR proof system [17] (best paper at CADE’17) is
such a generalization of the RAT proof system, actually an instance of the most
general way of defining a clausal proof system based on clause redundancy.

There are short PR proofs without new variables for some hard formulas [17].
Some of them can be found automatically [18]. The PR proof system can therefore
reveal new powerful inprocessing techniques. Short proofs for hard formulas in
the RAT proof system likely require many new variables, making it difficult
to find them automatically. The question whether PR proofs can efficiently be
converted into proofs in the RAT and DRAT proof systems has been open. In
this paper, we give a positive answer and present a conversion algorithm that in
the worst case results in a quadratic blowup in size. Surprisingly only a single
new Boolean variable is required to convert PR proofs into DRAT proofs.

At this point there exists only an unverified checker to validate PR proofs,
written in C. In order to increase the trust in the correctness of PR proofs, we
implemented a tool, called PR2DRAT, to convert PR proofs into DRAT proofs,
which in turn can be validated using verified proof checkers. Thanks to various
optimizations, the size increase during conversion is rather modest on available
PR proofs, thereby making this a useful certification approach in practice.

Contributions

– We show that the RAT and DRAT proof systems are as strong as the recently
introduced PR proof system by giving an efficient simulation algorithm of
PR proofs by RAT and DRAT proofs.

– We implemented a proof conversion tool including various optimizations,
which allow us to obtain linear size DRAT proofs from PR proofs for the
well-known pigeon-hole formulas. These new DRAT proofs are significantly
smaller than the most compact known DRAT proof for these formulas.

– We validated short PR proofs of hard formulas by converting them into DRAT
proofs and certified these using a formally verified proof checker.

Structure

After preliminaries in Sect. 2 we elaborate on clausal proof systems in Sect. 3
also taking the idea of deletion steps into account. Then Sect. 4 describes and
analyzes our simulation algorithm. In Sect. 5 we present how to optimize our
new algorithm for special cases followed by alternative simulation algorithms in
Sect. 6. Experiments are presented in Sect. 7 before we conclude with Sect. 8.



2 Preliminaries

Below we present the most important background concepts related to this paper.

Propositional Logic. Propositional formulas in conjunctive normal form (CNF)
are the focus of this paper. A literal is either a variable x (a positive literal)
or the negation x of a variable x (a negative literal). The complementary literal
l̄ of a literal l is defined as l̄ = x if l = x and l̄ = x if l = x. A clause C is
a disjunction of literals. A formula F is a conjunction of clauses. For a literal,
clause, or formula φ, var(φ) denotes the variables in φ. We treat var(φ) as a
variable if φ is a literal, and as a set of variables otherwise.

Satisfiability. An assignment is a (partial) function from a set of variables to the
truth values 1 (true) and 0 (false). An assignment is total w.r.t. a formula if it
assigns a truth value to all variables occurring in the formula. We extend a given
α to an assignment over literals, clauses and formulas in the natural way. Let φ
be either a literal, clause or formula φ. Then φ is satisfied if α(φ) = 1 and falsified
if α(φ) = 0. Otherwise φ is unassigned. In particular, we have x is satisfied if x is
falsified by α and vice versa. A clause is satisfied by α if it contains a literal that
is satisfied by α and falsified if all its literals are falsified. Finally a formula is
satisfied by α if all its clauses are satisfied by α. We often denote assignments by
sequences of literals they satisfy. For instance, x y denotes the assignment that
assigns 1 to x and 0 to y. For an assignment α, var(α) denotes the variables
assigned by α. Further, αl denotes the assignment obtained from α by flipping
the truth value of literal l assuming it is assigned. A formula is satisfiable if there
exists an assignment that satisfies it and unsatisfiable otherwise.

Formula Simplification. We denote the empty clause by ⊥ and by > the valid
and always satisfied clause. A clause is a tautology if it contains a literal l and its
negation l̄. Given assignment α and clause C, we define C |α = > if α satisfies
C; otherwise, C |α denotes the result of removing from C all the literals falsified
by α. For a formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}. We say
that an assignment α touches a clause C if var(α) ∩ var(C) 6= ∅. A unit clause
is a clause with only one literal. The result of applying the unit clause rule to
a formula F is the formula F |l where (l) is a unit clause in F . The iterated
application of the unit clause rule to a formula, until no unit clauses are left, is
called unit propagation. If unit propagation yields the empty clause ⊥, we say
that it derived a conflict. Given two clauses (l ∨ C) and (l̄ ∨D) their resolvent
is C ∨ D. If further D ⊆ C, self-subsuming literal elimination (SSLE) allows
removing l from (l∨C). Notice that C is the resolvent of (l∨C) and (l̄∨D). So
an SSLE step can be seen as two operations, learning the resolvent C followed
by the removal of (l ∨ C), which is subsumed by C. The reverse of SSLE is
self-subsuming literal addition (SSLA), which can add a literal l to a clause C in
the presence of a clause (l̄ ∨D) with D ⊆ C. The notion of SSLE first appeared
in [10] and is a special case of asymmetric literal elimination (ALE), which in
turn is the inverse of asymmetric literal addition (ALA) [16].



Clause C is blocked on literal l ∈ C w.r.t. a formula F , if all resolvents of C
and D ∈ F with l̄ ∈ D are tautologies. If a clause C ∈ F is blocked w.r.t. F ,
C can be removed from F while preserving satisfiability. If a clause C /∈ F is
blocked w.r.t. F , then C can be added to F while preserving satisfiability.

Formula Relations. Two formulas are logically equivalent if they are satisfied
by the same assignments. Two formulas are satisfiability equivalent if they are
either both satisfiable or both unsatisfiable. Given two formulas F and F ′, we
denote by F � F ′ that F implies F ′, i.e., all assignments satisfying F also satisfy
F ′. Furthermore, by F `1 F ′ we denote that for every clause (l1 ∨ · · · ∨ ln) ∈ F ′,
unit propagation on F ∧ (l̄1)∧· · ·∧ (l̄n) derives a conflict. If F `1 F ′, we say that
F implies F ′ through unit propagation. For example, (x) ∧ (y) `1 (x ∨ z) ∧ (y),
since unit propagation of the unit clauses (x) and (z) derives a conflict with (x),
and unit propagation of (y) derives a conflict with (y).

3 Clausal Proof Systems

In this section, we introduce a formal notion of clause redundancy and demon-
strate how it provides the basis for clausal proof systems. We start by introducing
clause redundancy [22]:

Definition 1. A clause C is redundant w.r.t. a formula F if F and F ∪ {C}
are satisfiability equivalent.

For instance, the clause C = (x∨ y) is redundant w.r.t. F = (x∨ y) since F and
F ∪{C} are satisfiability equivalent (although they are not logically equivalent).
Since this notion of redundancy allows us to add redundant clauses to a formula
without affecting its satisfiability, it gives rise to clausal proof systems.

Definition 2. For n ∈ N a derivation of a formula Fn from a formula F0 is
a sequence of n triples (d1, C1, ω1), . . . , (dn, Cn, ωn), where each clause Ci for
1 ≤ i ≤ n is redundant w.r.t. Fi−1 \ {Ci} with Fi = Fi−1 ∪ {Ci} if di = 0 and
Fi = Fi−1 \ {Ci} if di = 1. The assignment ωi acts as (arbitrary) witness of the
redundancy of Ci w.r.t. Fi−1 and we call the number n of steps also the length
of the derivation. A derivation is a refutation of F0 if dn = 0 and Cn = ⊥. A
derivation is a proof of satisfaction of F0 if Fn equals the empty formula.

If there exists such a derivation of a formula F ′ from a formula F , then F and F ′

are satisfiability equivalent. Further a refutation of a formula F , as defined above,
obviously certifies the unsatisfiability of F since any F ′ containing the empty
clause is unsatisfiable. Note that at this point these ωi are still place-holders
used in refinements, i.e., in the RAT and PR proof systems defined below, where
these ωi are witnesses for the redundancy of Ci w.r.t. Fi−1. In these specialized
proof systems this redundancy can be checked efficiently, i.e., in polynomial time
w.r.t. the size of Ci, Fi−1 and ωi.



3.1 The RAT proof system

The RAT proof system allows the addition of a redundant clause, which is is a
so-called resolution asymmetric tautology [21] (RAT, defined below). It can be
efficiently checked whether a clause is a RAT.The following definition of RAT is
equivalent to the original one in [21] based on resolvents using results from [17].

Definition 3. Let F be a formula, C a clause, and α the smallest assignment
that falsifies C. Then, C is a resolution asymmetric tautology (RAT) with respect
to F if there exists a literal l ∈ C such that F |α `1 F |αl. We say that C is a
RAT on l w.r.t. F . The empty clause ⊥ is a RAT w.r.t. F iff F `1 ⊥.

Informally, F |α `1 F |αl means that F |αl is at least as satisfiable compared
to F |α. We know that αl satisfies C as l ∈ C, thus F |αl = (F ∧C) |αl. Hence, if
F has a satisfying assignment β that falsifies C, which necessarily is an extension
of α, then it also satisfies (F∧C) |αl, and thus there exists a satisfying assignment
of F that satisfies C, obtained from β by flipping the assigned value of l.

Example 1. Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) and C = (x ∨ z). Then, α = x z
is the smallest assignment that falsifies C. Observe that C is a RAT clause on
literal x w.r.t. F . First, αx = x z. Now, consider F |α = (y) and F |αx = (y).
Clearly, unit propagation on F |α∧ (y) derives a conflict, thus F |α `1 F |αx. ut

In a RAT derivation (d1, C1, ω1), . . . , (dn, Cn, ωn) all di’s are zero (additions). Let
αi denote the smallest assignment that falsifies Ci and let li ∈ Ci be a literal on
which Ci is a RAT on li w.r.t Fi−1. Each witness ωi in a RAT derivation equals
(αi)li , which is obtained from αi by flipping the value of li.

3.2 The PR proof system

As discussed, addition of PR clauses (short for propagation-redundant clauses)
to a formula can lead to short proofs for hard formulas without the introduction
of new variables. Although PR as well as RAT clauses are not necessarily implied
by the formula, their addition preserves satisfiability [17]. The intuitive reason
for this is that the addition of a PR clause prunes the search space of possible
assignments in such a way that there still remain assignments under which the
formula is as satisfiable as under the pruned assignments.

Definition 4. Let F be a formula, C a non-empty clause, and α the smallest
assignment that falsifies C. Then, C is propagation redundant (PR) with respect
to F if there exists an assignment ω which satisfies C, such that F |α `1 F |ω.

The clause C can be seen as a constraint that “prunes” from the search space
all assignments that extend α. Note again, that in our setting assignments are in
general partial functions. Since F |α implies F |ω, every assignment that satisfies
F |α also satisfies F |ω, meaning that F is at least as satisfiable under ω as it
is under α. Moreover, since ω satisfies C, it must disagree with α on at least
one variable. We refer to ω as the witness, since it witnesses the propagation-
redundancy of the clause. Consider the following example from [17].



Example 2. Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = (x), and let ω = x z be
an assignment. Then, α = x is the smallest assignment that falsifies C. Now,
consider F |α = (y) and F |ω = (y). Clearly, unit propagation on F |α ∧ (y)
derives a conflict. Thus, F |α `1 F |ω and C is propagation redundant w.r.t. F .
Notice that C is not RAT w.r.t F as (y) = F |α 6`1 F |αx = (y)(z). ut

Most known types of redundant clauses are PR clauses [17], including blocked
clauses [23], set-blocked clauses [22], resolution asymmetric tautologies, etc.

3.3 The power of deletion

The clausal proof system DRAT [29] is the de-facto standard for proofs of un-
satisfiability (refutations) in practice. It extends RAT by allowing the deletion
of clauses. The main purpose of clause deletion is to reduce computation cost to
validate proofs of unsatisfiability. Note, that SAT solvers not only learn clauses,
but also aggressively delete clauses to speed up reasoning. Integrating deletion
information in proofs is crucial to speed up proof checking.

In principle, while deleted clause information has to be taken into account to
update the formula after a deletion step, one does not need to check the validity of
clause deletion steps in order to refute a propositional formula. Simply removing
deleted clauses during proof checking trivially preserves unsatisfiability.

Proofs of satisfiability only exist in proof systems that allow and enforce
valid deletion steps, because they are required to reduce a formula to the empty
formula. In case of propositional formulas, the notion of proofs of satisfiability is
probably not useful as a satisfying assignment can be used to certify satisfiability.
However, for richer logics, such as quantified Boolean formulas, the proof of
satisfiability can be exponentially smaller compared to alternatives [19,20].

4 Conversion algorithm

This section presents our main algorithm, which describes how to convert a PR
derivation (0, C1, ω1), . . . , (0, Cn, ωn) of a formula Fn from a formula F0 into a
DRAT derivation (d1, D1, ω

′
1), . . . , (dm, Dm, ω

′
m) of Gm = Fn from G0 = F0.

Each PR proof step adds a clause to the formula. Let G0 be a copy of F0 and
Fi := Fi−1 ∧Ci for 1 ≤ i ≤ n. Each proof step in a DRAT proof either deletes or
adds a clause depending on whether di is 1 or 0 (respectively). For 1 ≤ j ≤ m
we either have Gi := Gi−1 \ {Di} if di is 1 or Gi := Gi−1 ∧Di if di is 0.

Each single PR derivation step (0, Ci, ωi) is also a PR derivation of Fi from
Fi−1 and our conversion algorithm simply translates each such PR derivation
step separately into a DRAT derivation of Fi from Fi−1. The conversion of the
whole PR derivation is then obtained as concatenation of these individual DRAT
derivations, which gives a DRAT derivation of Fn from F0. We will first offer an
informal top-down description of converting a single PR derivation step into a
sequence of DRAT steps.



4.1 Top-Down

Consider a formula F and a clause C which has PR w.r.t. F with witness ω, i.e., a
single PR derivation step. The central question addressed in this paper is how to
construct a DRAT derivation of F ∧C from F . The constructed DRAT derivation
(d1, C1, ω1), . . . , (dq, Cq, ωq), (dq+1, Cq+1, ωq+1), . . . , (dp, Cp, ωp) of F ∧C from F
consists of three parts. It also requires to introduce a (new) Boolean variable x
that does not occur in F .

1. Construct a DRAT derivation (d1, C1, ω1), . . . , (dq, Cq, ωq) of F ′ from F where
a. the clause (x ∨ C) is a RAT on x w.r.t. F ′ and
b. there exists a DRAT derivation from F ′ ∧ (x ∨ C) to F ∧ C.

2. In step q + 1, clause Cq+1 = (x ∨ C) is added to F ′.
3. The steps after step q + 1 transform F ′ ∧ (x ∨ C) into F ∧ C.

Notice that (x∨C) is blocked w.r.t. F and could therefore be added to F as a first
step. However, it is very hard to eliminate literal x from F ∧ (x ∨ C). Instead,
we transform F into F ′, before the addition and reverse the transformation
afterwards. Below we describe the details of our simulation algorithm in five
phases of which phase (I) and (II) correspond to the transformation (part 1.)
and phase (IV) and (V) corresponds to the reverse transformation (part 3.).

4.2 Five Phases

We will show a transformation of how Fi+1 is derived from Fi using PR step
(0, Ci+1, ωi+1) into a sequence of p DRAT proof steps from Gj to Gj+p such that
Gj = Fi and Gj+p = Fi+1. In the description below, F refers to Fi, C refers to
Ci+1, and ω refers to ωi+1. Further let x be a new Boolean variable, i.e., x does
not occur in F . We can assume that var(C) ⊆ var(F ). Otherwise there exists a
literal l ∈ C and var(l) /∈ var(F ). Thus C is blocked on l w.r.t. F and can be
added to F using a single RAT step.

(I) Add shortened copies of clauses that are reduced, but not satisfied by ω.
The first phase of the conversion algorithm extends F by adding the clauses
(x ∨ D) with D ∈ F such that D |ω ⊂ D. The literal x does not occur in
F . All clauses (x ∨ D) are blocked on x w.r.t. F as no resolution on x is
possible. We denote with G (I) the formula F after these clause additions.

(II) Weaken the clauses that are reduced and satisfied by ω.
A clause E ∈ F is called involved if it is both reduced by ω as well as
satisfied by ω. The second phase weakens all involved clauses by replacing
E with (x∨E) as follows. First, we add the implication x⇒ ω, or in clauses
(x ∨ l) with l ∈ ω. These clauses are blocked because G (I) does not contain
clauses with literal x. Second, we weaken the involved clauses using self-
subsuming literal addition (SSLA), since they all contain at least one l ∈ ω.
Third, we remove the implication x⇒ ω. When this implication was added,
the clauses (x ∨ l) with l ∈ ω were blocked on x. Now we can remove them,
because they have RAT on l, which can be seen as follows. Consider a clause



containing l̄. If it is a weakened clauses (x∨E) of E where E ∈ F is satisfied
by ω, then x occurs in opposite phase and the resolvent is a tautology (same
condition as for blocked clauses). Otherwise the resolvent on l of (x∨ l) with
the clause containing l̄ is subsumed by a clause (x ∨D) with D ∈ F |ω \ F
added in first step above. The resulting formula, where all involved clauses
in G (I) are weakened, is denoted by G (II).

(III) Add the weakened PR clause.
Add the clause (x ∨ C) to G (II), resulting in G (III). The key observation
related to this phase is that (x ∨ C) has RAT on x w.r.t. G (II): The only
clauses in G (II) that contain literal x are the ones that were added in the
first phase. We need to show that G (II) implies every clause (x ∨ C ∨ D)
with D ∈ F |ω \ F by unit propagation. Let α be the smallest assignment
that falsifies C. Since C has PR w.r.t. F using witness ω, we know that
F |α `1 D with D ∈ F |ω \ F . This is equivalent to F `1 (C ∨ D) with
D ∈ F |ω \ F . Furthermore G (II) |x ⊇ F . Hence, G (II) |x `1 (C ∨ D) or
equivalently, G (II) `1 (x ∨ C ∨D).

(IV) Strengthen all weakened clauses.
The fourth phase removes all occurrences of the literal x from clauses in
G (III), thereby reversing the second phase and strengthening (x ∨ C) to C.
This phase consists of three parts. First, we reintroduce the implication
x ⇒ ω, or in clauses (x ∨ l) with l ∈ ω. These clauses have RAT on l
w.r.t. G (III) by the same reasoning used to remove them in the second phase
above and in case (x ∨ l) can be resolved on l with the only clause (x ∨ C)
added in the third phase, thus l̄ ∈ C, the resolvent is a tautology (contains
x and x). Afterwards, we strengthen all clauses (x ∨ E) ∈ G (III) to E as
follows. Note that this also strengthens clause (x ∨ C) to C. Observe that
all clauses (x∨E) ∈ G (III) including (x∨C) are satisfied by ω and therefore
there exists a clause (x ∨ l) with l ∈ E. Self-subsuming literal elimination
(SSLE) can now eliminate all literals x. Finally, the implication x ⇒ ω is
no longer required. The clauses (x ∨ l) with l ∈ ω added twice already can
be removed again since literal x has become pure due to the strengthening
of all clauses containing literal x. The resulting formula obtained from G (III)

by removing all occurrences of literal x is denoted by G (IV).
(V) Remove the shortened copies.

The fifth phase reverses the first phase, and actually uses the same argument
as the fourth phase. All clauses in G (III) that contained a literal x were
strengthened by removing these literals in phase four. As a consequence, the
literal x is (still) pure in G (IV). The only clauses that still contain literal x
are exactly the clauses that have been added in the first phase. Since they
are all blocked on x w.r.t. G (IV), they can be eliminated, while preserving
satisfiability. After removing these clauses we obtain G (V) which equals F∧C.

4.3 Complexity

In this section we analyze the worst case complexity of converting a PR deriva-
tion (0, C1, ω1), . . . , (0, Cn, ωn) of a formula Fn from a formula F0 into a DRAT



derivation (d1, D1, ω
′
1), . . . , (d1, Dm, ω

′
m) of Gm = Fn from G0 = F0 using the

presented simulation algorithm. The number of DRAT steps that are required
to simulate a single PR addition step depends on the size of the formula. Let
N = |Fn| be the number of clauses in the last Fn and V = |var(Fn)| the num-
ber of its variables. Since a PR derivation does not remove clauses, we have
|Fi| = |Fi−1|+ 1 and |var(Fi)| ≥ |var(Fi−1)|. Therefore for i ∈ {1..n}, |Fi| ≤ N
and |var(Fi)| ≤ V . In the analysis we ignore clause deletion, since the number
of clause deletions is bounded by the number of added clauses.

In phase (I) of the conversion algorithm, copies of clauses that are reduced
but not satisfied by ωi are added, while phase (II) clauses are weakened which
are reduced and satisfied by ωi. Since a clause is either satisfied, not satisfied,
or untouched by ωi, the sum of the number of copies and weakened clauses is
at most |Fi| ≤ N . Also the implication x ⇒ ωi is added in phase (II), meaning
at most |var(ωi)| ≤ |var(Fi)| ≤ V clause addition steps. Phase (III) adds a
single clause. Phase (IV) adds again the implication x ⇒ ωi (at most V steps)
and strengthens all weakened clauses (at most N steps). Phase (V) only deletes
clauses. Thus the total number of clause additions for all phases in the conversion
of a single PR step is bounded by 2V + 2N + 1.

There are n ≤ N additions in the PR proof and for each addition we apply
the conversion algorithm. Hence the total number of clause addition steps in the
DRAT derivation is at most 2NV +2N2+N . Since V ≤ N for any interesting PR
derivation, the number of steps in the resulting DRAT derivation is in O(N2).

5 Optimizations

The simulation algorithm described in the prior section was designed to result
in compact DRAT derivations using a single new variable, while focussing on
converting any PR derivation into a DRAT derivation. The algorithm can be
further optimized to reduce the size of the resulting DRAT derivations.

5.1 Refutations

In practice, most PR derivations are refutations, i.e., they include adding the
empty clause. When converting PR refutations, one can ignore the justification
of any weakening steps as such steps trivially preserve unsatisfiability. The only
weakening steps in the simulation algorithm are performed in phase (II). The
purpose of the addition of the implication x ⇒ ω in phase (II) is to allow the
weakening via self-subsuming literal addition (SSLA). This justification is no
longer required for PR refutations. Without the addition of x⇒ ω, one can also
discard its removal. So both the first and third part of phase (II) can be omitted.

5.2 Witness minimization

In some situations, only a subset of the involved clauses needs to be weakened
(phase (II)) and later strengthened (phase (IV)). Weakening of involved clauses



is required to make sure that the clauses (x ∨ l) with l ∈ ω are RAT on l
w.r.t. G (III) in phase (IV) of the simulation algorithm. However, some of the
clauses (x∨ l) may be unit implied by others (and do not require to be a RAT on
l). This situation occurs when a subset of the witness implies the full witness via
unit propagation. We minimize the witness by searching for the smallest witness
ω′ ⊆ ω such that ω′ implies ω via unit propagation. Only clauses reduced by ω′

and satisfied by ω need to be weakened in phase (II) and strengthened in (IV).

5.3 Avoiding copying

In some quite specific case, one can avoid copying the clauses that are reduced,
but not satisfied by the witness altogether. In other words skip phase (I) and
(V) of the simulation algorithm. This case, however, occurred frequently in our
PR proofs. Let α denote the smallest assignment that falsifies the PR clause C
to be added. Furthermore, let ω be the witness and ω′ the minimized witness as
discussed above. The condition for avoiding clause copying consists of two parts.
First, there is no literal l ∈ α such that l̄ ∈ ω′. Recall that there always exists a
literal l ∈ α such that l̄ ∈ ω. So witness minimization is necessary. Second, for
each literal l ∈ ω′, the unit clause (l) should be a RAT on l w.r.t. the current
formula without the involved clauses under α. Although both conditions are very
restrictive, they apply often in the PR proofs used in the evaluation.

Basically, this optimization removes phases (I) and (V), and modifies (II),
(III), and (IV). The modified phases are named phase (i), (ii), and (iii), resp.

(i) Weaken the clauses that are reduced by ω′ and satisfied by ω.
Clause E ∈ F is called involved if it is reduced by the reduced witness ω′

and satisfied by the original ω. The first phase weakens all involved clauses
E to (x ∨ E) as follows. First, we add the implication x ⇒ ω′ ∪ α, or in
clauses (x ∨ l) with l ∈ ω′ ∪ α. These clauses are blocked because G does
not contain clauses with literal x. Now we can weaken the involved clauses
using SSLA. Then we remove the implication part x⇒ ω′, but keep x⇒ α.
When adding this implication, the clauses (x ∨ l) with l ∈ ω′ were blocked
on x. Now we can remove them, because they have RAT on l as all clauses
containing l̄ have been either weakened (if they were satisfied by ω) or are
implied by α by the second condition. The resulting formula, G in which all
involved clauses are weakened and includes x⇒ α, is denoted by G (i).

(ii) Add the weakened PR clause.
Add the clause (x ∨ C), which is equivalent to the implication x ⇐ α, to
G (i), resulting in G (ii). The only clauses containing literal x are the ones that
originate from x⇒ α. As a consequence, (x∨C) is blocked on x w.r.t. G (i).

(iii) Strengthen all weakened clauses.
The third phase removes all occurrences of the literal x from clauses in
G (ii), thereby reversing the second phase and strengthening (x ∨ C) to C.
This phase consists of four parts. First, we reintroduce the implication part
x ⇒ ω′, or in clauses (x ∨ l) with l ∈ ω′. Again, these clauses have RAT on
l w.r.t. G (ii). Second, we remove the implication part x⇒ α, i.e. the clauses



(x ∨ l) with l ∈ α. Afterwards, we strengthen (x ∨ C) to C and all clauses
(x∨E) ∈ G (ii) to E. Observe that all clauses (x∨E) ∈ G (ii) including (x∨C)
are satisfied by ω and therefore there exists a clause (x∨ l) with l ∈ E. SSLE
can therefore remove all literals x. Finally, the implication x ⇒ ω′ is no
longer required. The clauses (x ∨ l) with l ∈ ω′ can be eliminated because
literal x has become pure due to the strengthening of all clauses containing
literal x. The resulting formula, i.e., G (ii) after removing all occurrences of
literal x, is denoted by G (iii) and equals G ∧ C.

In case the PR derivation is a refutation, we can further optimize this case,
by changing phase (i) as follows: Instead of adding the implication x⇒ ω′ ∪ α,
the implication x ⇒ α is added. Without the addition of the implication part
x⇒ ω′, we can also discard removing that part at the end of phase (i).

6 Alternative Simulation Algorithms

Even though the conversion from PR derivations to DRAT derivations is arguably
the most useful one in practice, one can also consider the following alternatives.

6.1 Limiting the number of RAT steps

Most steps in the simulation algorithm are “basic” steps, i.e., self-subsuming lit-
eral addition or elimination and blocked clause addition or elimination. There are
only few “full” RAT addition steps: The removal of the implication in phase (II),
the addition of the weakened PR clause in phase (III) and the addition of the
implication in phase (IV). It is interesting to explore the option to reduce the
number of these “full” RAT addition steps. Eliminating “full” RAT addition steps
brings us close to a simulation algorithm with only basic steps.

It is easy to eliminate all but one “full” RAT addition step. In order to elimi-
nate the RAT steps in phase (II), one can weaken the clauses (i.e., add a literal x
using SSLA) that are reduced but not satisfied by the witness using the shortened
copies of clauses that are reduced, but not satisfied by ω. After the weakening,
we can remove the implication x⇒ ω using blocked clause elimination (instead
of RAT), because now all clauses that are touched by ω have a literal x. Therefore
all clauses (x∨ l) with l ∈ ω are blocked on l. The weakening also allows adding
the implication x⇒ ω in phase (IV) using blocked clause addition steps (instead
of RAT). The strengthening of the newly weakened clause can be performed in
phase (IV) using SSLE (after adding the implication). It is not obvious how to
replace the only remaining RAT addition in phase (III) using basic steps.

6.2 Converting DPR proofs into DRAT proofs

So far we only considered converting a PR clause addition as a sequence of
DRAT steps and ignored deletion of PR clauses from a formula. In most cases,
clause deletion steps in a proof facilitate more efficient checking of a proof of



unsatisfiability and can therefore be deleted without any checking. However,
there are situations in which one wants to check the validity of clause deletion
steps. In particular for proofs of satisfiability, i.e., a sequence of proof steps that
show that a given formula is equivalent to the empty formula and thus satisfiable.

The DPR proof system is a clausal proof system that allows the addition
and deletion of PR clauses. Conversion of a PR clause addition step into DRAT
proof steps is equivalent to the conversion of such a step in the PR proof system.
The conversion of a PR clause deletion step is slightly different. Given a formula
F and a clause C ∈ F , which is a PR clause w.r.t. F with witness ω. The first
phase of the conversion is exactly the same as phase (I) of the PR clause addition
conversion. The second phase of the conversion is slightly different compared to
phase (II) of the PR clause addition conversion: Instead of weakening all clauses
reduced and satisfied by ω, we weaken all clauses satisfied by ω. Notice that this
includes weakening C to (x∨C). The third phase consists of deleting (x∨C) from
the current formula. Recall that phase (III) of the PR clause addition conversion
added (x ∨ C). The final phase corresponds to phases (IV) and (V).

6.3 Converting PR refutations into RAT refutations

The presented simulation algorithm converts PR derivations into DRAT deriva-
tions. We selected the DRAT proof system as target, because it is the most
widely-supported proof system by top-tier SAT solvers and it allows step-wise
simulation using deletion steps. The question arises whether deletion steps are
required when converting a PR refutation. In short, the answer is no when al-
lowing the introduction of arbitrary many new Boolean variables. Converting a
deletion step can be realized as follows. Let C be the clause that is deleted from
a formula F . For each x ∈ var(C), add to F the equivalence x′ ⇔ x with x′

being a new variable. Afterwards, copy all clauses in F —apart from C— that
contain at least one literal l with var(l) ∈ var(C) using the new x′ variables
instead of the old x variables. Finally replace all occurrences of old literals x and
x in the remaining proof by literals x′ and x′, respectively.

In order to limit the number of copy operations, one can group (consecu-
tive) deletion steps and use the same variables x′ for the group. The simulation
algorithm can be partitioned into two groups of (consecutive) clause addition
steps that are followed each by groups of consecutive clause deletion steps: The
first group of addition steps consists of phase (I) and the first half of phase (II),
i.e., adding the implication x⇒ ω and the weakened involved clauses. The first
group of deletion steps consists of the remaining part of phase (II), i.e., dele-
tion of the involved clauses and deletion of the implication x ⇒ ω. The second
group of consecutive addition steps consists of phase (III) and the first half of
phase (IV), i.e, adding the implication x ⇒ ω and adding back the involved
clauses. The second group of consecutive deletion steps consists of the remain-
ing part of phase (IV), i.e., removal of the weakened involved clauses and the
implication x⇒ ω, and phase (V). By grouping the deletion steps, one can con-
vert PR refutations into RAT refutations with at most a quadratic blowup, so the
same worst case complexity as converting PR derivations into DRAT derivations.



7 Evaluation

We implemented a tool, called PR2DRAT, to convert PR proofs into DRAT proofs3

and evaluated the tool on short PR proofs for hard formulas from three families:

(1) pigeon-hole, (2) two-pigeons-per-hole [2], and (3) Tseitin formulas [27,4].

Every resolution proof of a formula in these families is exponential in the size
of the formula [11,28]. As a consequence, any CDCL solver without dedicated
special reasoning techniques, such as cardinality or XOR reasoning, is unable to
solve these benchmarks in reasonable time. In contrast, our PR proofs are smaller
than the formulas, so linear in size. The PR proofs of the pigeon-hole formu-
las and two-pigeons-per-hole formulas have been constructed manually in earlier
work [17]. The proofs of the Tseitin formulas have been manually constructed by
expressing Gaussian elimination in the PR system. Applying Gaussian elimina-
tion —after syntactically extracting XOR constraints from the CNF formulas—
is enough to solve these formulas. We will first evaluate the size of the conver-
sion. Afterwards we certify for the first time the short PR proofs by converting
them into DRAT proofs which are checked by a formally verified checker.

7.1 Proof Simulation and Optimization

We will compare three kinds of DRAT proofs for the benchmarks used in the
experiments: the most compact existing ones [14,15], the proofs obtained from
using our plain conversion algorithm, and the proofs obtained from our optimized
algorithm. The most compact existing ones originate from expressing symmetry
breaking as DRAT proof steps. Table 1 shows the comparison. All proofs have
been trimmed using the DRAT-trim tool [12] once. Applying DRAT-trim multiple
rounds (using the output proof as input proof for the next round) allows further
reduction of the proof size, but typically these extra reductions are small.

For pigeon-hole formulas over n pigeons, the most compact existing proofs
have O(n4) proof steps. This is also the case for the DRAT proofs obtained
through our basic conversion algorithm as well as for the extended resolution
proofs by Cook [5]. However, DRAT proofs obtained with our optimized algo-
rithm have only O(n3) proof steps. Notice that the size of pigeon-hole formulas
as well as the size of PR proofs are both in O(n3). In other words, our optimized
conversion algorithm cannot only produce DRAT proofs, but for pigeon-hole for-
mulas it generates the first DRAT proofs of linear size.

The results for the two-pigeons-per-hole formulas are similar, but more pro-
nounced: There exist only DRAT proofs of the formulas up to 12 holes and 25
pigeons (tph12) [15]. Our plain simulation algorithm can produce DRAT proofs
of the formulas up to 20 holes and 41 pigeons (tph20). Moreover, our optimized
simulation algorithm is able to produce proofs that are linear in size of the
formulas, although not linear in the size of the PR proofs.

3 The tool, checkers, formulas, and proofs discussed in this section are available at
http://www.cs.utexas.edu/~marijn/pr2drat/.

http://www.cs.utexas.edu/~marijn/pr2drat/


Table 1. Comparison of the size of trimmed, generated DRAT proofs for hard formulas.
The size of proofs is measured in the number of clause addition steps (#add). We denote
with “—” that no DRAT proof is available. Bold is used for the smallest DRAT proofs.

input PR proofs DRAT proofs (#add)
formula #var #cls #add existing [14,15] plain optimized

hole20 420 4,221 2,870 49,410 94,901 26,547
hole30 930 13,981 9,455 234,195 422,101 89,827
hole40 1,640 32,841 22,140 715,030 1,241,126 213,107
hole50 2,550 63,801 42,925 1,708,915 2,893,476 416,387

tph8 136 5,457 1,156 253,958 86,216 25,204
tph12 300 27,625 3,950 1,966,472 612,108 127,296
tph16 528 87,329 9,416 — 2,490,672 401,004
tph20 820 213,241 18,450 — 7,440,692 976,376

Urquhart-s5-b1 106 714 620 — 30,235 28,189
Urquhart-s5-b2 107 742 606 — 34,535 32,574
Urquhart-s5-b3 121 1,116 692 — 44,117 41,230
Urquhart-s5-b4 114 888 636 — 40,598 37,978

We are unaware of any DRAT proofs of hard Tseitin formulas, e.g., from the
Urquhart-s5-b* family [4], nor of any tool able to produce such DRAT proofs.
However, we succeeded to manually produce short PR proofs without new vari-
ables for these formulas and convert them into DRAT proofs. The resulting DRAT
proofs, with and without optimizations, are relatively large compared to the
PR proofs. The blowup is close to the quadratic worse case. We observed that
DRAT-trim was able to remove many (around 70%) of clause additions, which
suggests that there could be an optimization to generate shorter DRAT proofs.

7.2 Verified PR Proof Checking

Our proof simulation approach can be used to validate PR proofs with formally
verified tools and thereby increasing the confidence in their correctness. The tool
chain works as follows: Given a formula F and an alleged PR proof PPR of F ,
our tool PR2DRAT converts PPR into a DRAT proof PDRAT. Afterwards, we use the
DRAT-trim tool to convert PDRAT into a CLRAT (compressed linear RAT) proof
PCLRAT. CLRAT proofs can be efficiently checked using formally verified check-
ers [7]. We used the verified checker ACL2check [13] to certify that PCLRAT is a
valid proof of unsatisfiability of F . Notice that the tools PR2DRAT and DRAT-trim

are unverified and thus may turn an invalid proof into a valid proof or vice versa.
Figure 1 shows the results of applying this tool chain on the benchmark

suite. The PR2DRAT tool was able to convert each PR proof into a DRAT proof
in less than a minute and half of the proofs in less than a second. The runtimes
of DRAT-trim and ACL2check are one to two orders of magnitude higher than
for PR2DRAT. Thus our tool adds little overhead to the tool chain. The sizes of
the DRAT and CLRAT proofs are comparable. However, these proofs are differ-
ent: DRAT-trim (A) removes redundant clause additions; (B) includes hints to
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Fig. 1. Certification of PR proofs using PR2DRAT, DRAT-trim, and the formally verified
checker ACL2check. Left the sizes of proofs in the PR, DRAT, and CLRAT formats are
shown in bytes and right the proof conversion and checking times are in seconds. No
times are shown for the Urquhart instances as all times were less than a second.

speedup verified checking; (C) compresses proofs. The effect of (A) depends on
proof quality; (B) increases the size of proofs of small hard problems by roughly a
factor of four; (C) reduces size to 30% of the uncompressed proofs. The difference
between the DRAT and CLRAT proofs therefore indicate how much redundancy
was removed: for pigeon-hole proofs hardly anything, for two-pigeons-per-hole
proofs a modest amount, and for Tseitin proofs a lot. Notice that runtimes of the
verified checker ACL2check are comparable to the C-based checker DRAT-trim.

8 Conclusions and Future Work

We showed how to convert PR proofs into DRAT proofs using only a single new
variable with an at most quadratic blowup in proof size. This result suggests
that it might also be possible to construct DRAT proofs without new variables
using one variable elimination step and reusing the eliminated variable. The
optimizations implemented in our conversion tool PR2DRAT made it possible to
produce DRAT proofs for hard problems that are significantly smaller compared
to existing DRAT proofs of those problems. The main open question is whether
PR proofs can be converted into RAT proofs (i.e., not allowing the deletion
steps) with a small number of new variables. Without deletion steps, it seems
that copying the formula using new variables is required.

Our new tool chain for certifying SAT solving results using PR proofs consists
of four steps: proof production (solving), conversion from PR to DRAT, conver-
sion from DRAT to CLRAT, and validation of the CLRAT proof using a formally
verified checker. In order to fasten adaptation of the approach, we are exploring
elimination of the second step, by integrating the conversion algorithm in either
SAT solvers or in DRAT proof checkers.
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