
Sensitivity Analysis of Locked Circuits

Joseph Sweeney1, Marijn J. H. Heule2, and Lawrence Pileggi1

1 Department of Electrical and Computer Engineering
2 Computer Science Department

Carnegie Mellon University, Pittsburgh PA 15213, USA
{joesweeney,marijn,pileggi}@cmu.edu

Abstract

Globalization of integrated circuits manufacturing has led to increased security con-
cerns, notably theft of intellectual property. In response, logic locking techniques have
been developed for protecting designs, but many of these techniques have been shown to
be vulnerable to SAT-based attacks. In this paper, we explore the use of Boolean sensi-
tivity to analyze these locked circuits. We show that in typical circuits there is an inverse
relationship between input width and sensitivity. We then demonstrate the utility of this
relationship for deobfuscating circuits locked with a class of “provably secure” logic lock-
ing techniques. We conclude with an example of how to resist this attack, although the
resistance is shown to be highly circuit dependent.

1 Introduction

Due to prohibitively high research and development costs, only a few foundries are manufactur-
ing integrated circuits (ICs) in advanced technology nodes. Consequently, many IC companies
tend to operate fabless, relying on untrusted foundries to manufacture their designs. Once a
circuit is sent for fabrication, the foundry gains full visibility of the intellectual property (IP)
in netlist form with minimal effort, allowing IP theft. This threat undermines the significant
cost associated with developing digital circuits and is a growing concern in the IC industry
[6, 15, 12].

To combat IP theft, a variety of logic locking techniques have been developed. These
techniques add programmable elements to the logic of an IC. When programmed incorrectly,
the elements disrupt the circuit, obfuscating the true functionality. The key, which correctly
programs the elements, is stored in an on-chip, tamper-proof memory. This key is set post-
manufacture, so the correct functionality is never revealed to the untrusted foundry.

Early examples of logic locking techniques insert keyed exclusive-or (XOR) and multiplexer
(MUX) gates to corrupt the next-state logic [10, 14]. Unfortunately, these methods have been
largely broken using a variety of attacks, the most successful of which are miter-based SAT
attacks [18]. Researchers have attempted to increase the difficulty of the miter-based attack
by inserting resistant logic blocks into the locked circuit [22, 21]. These techniques reduce the
number of keys ruled out per attack iteration, significantly increasing the overall execution
time; however, the logic blocks are susceptible to removal attacks since the circuitry is typically
traceable through properties such as signal probability [22].

In response to the removal attacks, a new strip-functionality class of locking techniques has
been developed. These techniques resist removal by stripping functionality from the circuit
and re-establishing that functionality using the correct key. This class of technique currently
includes TTLock [24], TTLock* [13], SFLL-HD [23], and SFLL-Flex [23]. Under this class of
locking schemes, miter-based SAT attack resistance is maintained. Additionally, even though
the locking circuitry can still be isolated and removed, the resulting circuit will still exhibit
incorrect behavior.
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In this paper, we explore the use of Boolean sensitivity in analyzing circuits locked with
the strip-functionality class of techniques. Sensitivity is shown to be a powerful signal that
can reveal flipped input patterns and thus the key to the locked circuit. Specifically, the
contributions of this work are the following:

• Characterization of the sensitivities of a set of benchmark circuits

• Analysis of impact of strip-functionality class of locking techniques on sensitivity

• Development of a sensitivity-based SAT attack, detecting inputs with outlying sensitivity
values

• An improved insertion technique for TTLock that mitigates this attack for certain circuits

2 Background

In this section, we present the most important background concepts related to this paper,
including the attack model.

2.1 Digital Integrated Circuits

Digital ICs perform computations on Boolean-valued signals. Typically, they consist of inter-
connected logic gates and state elements that form a finite state machine (FSM). The inter-
connection of a circuit’s gates and state is specified using a netlist. During normal operation,
the FSM is evaluated periodically. Each cycle, the logic gates compute the current output
values and the next values of the state elements based on the the current state and input val-
ues. During test mode, a scan-chain enables arbitrary reading and writing of a digital circuit’s
state. The scan-chain is a commonly used test infrastructure that forms a serial connection
of all the circuit’s state elements. This ability allows the logic of the circuit to be considered
separately from the state elements; essential in testing a design, but a powerful attack vector
for an adversary.

2.2 Attack Model

In the characterization of the security of a locking technique, an attack model is used to spec-
ify assumptions regarding the adversary’s ability. In this paper and in the targeted class of
techniques, it is assumed that the adversary has access to two artifacts: the locked circuit’s
netlist and an unlocked version of the circuit. The unlocked circuit has the correct key set in
its tamper-proof memory, affording the attacker black-box access, commonly referred to as an
oracle. These artifacts correspond to the access a foundry likely has when manufacturing a
commercial design. The netlist can be easily reversed engineered from the design data and the
unlocked circuit can be obtained on the open market. It is also assumed that the adversary
has access to the unlocked design’s scan chains. While additional side-channel techniques may
augment an attacker, they are considered outside the scope of the paper.

In general the problem being solved by the attacker is as follows. The attacker has a set
of Boolean functions, obtained from the netlist. Each function, f : {0, 1}n+k → {0, 1}, has
n normal inputs and k key inputs. The attacker also has an unlocked circuit to which an
unknown, fixed key value is applied. The attacker can apply arbitrary inputs to the unlocked
circuit, observing the corresponding outputs. The goal of the attacker is to obtain the key or a
functionally equivalent version.
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Figure 1: Miter-based SAT attack steps: (a) Miter circuit construction, (b) Unlocked (oracle)
circuit produces correct IO functionality (c) Addition of learned IO constraint to miter circuit

2.3 Brute Force Attack

Given the above attack model, a brute force attack establishes a baseline for the necessary key
width of the circuit. This attack entails testing all possible values for the keys and inputs of a
circuit. Each key-input combination is applied to the function. The output is compared to the
unlocked circuit’s output under the same input, ruling out keys when a difference is observed.
Assuming a typical scan-chain frequency of 100MHz and a state size of 1000 bits, a query to
the oracle can occur at a rate of 100kHz. With access to 1 unlocked circuit and 1 month of
attack time, it is likely that the attacker can break any locking technique with under 38 bits of
keys and inputs via brute force. A commonly assumed safe amount of key bits is 64.

2.4 Propositional Satisfiability

A successful approach to deal with hard combinatorial problems, such as finding the key of
locked circuits, is to encode them into propositional logic and to solve the resulting proposi-
tional formulas with a satisfiability (SAT) solver. The performance of SAT solvers improved
significantly in the last two decades and they are used for many applications in hardware and
software verification [2, 9]. In recent years, SAT solvers have also been successfully applied to
various attacks, such as hash collisions [17] and mathematical challenges [11].

A circuit can be encoded into propositional logic, specifically the conjunctive normal form
(CNF) used by most SAT solvers, via the Tseytin transformation [19]. This transformation
can take a circuit netlist and produce a set of clauses which, when collectively satisfied, will
correspond to the original circuit’s behavior.
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2.5 Miter-Based SAT Attack

The above attack model enables the mounting of a more targeted, miter-based SAT attack.
This attack uses the netlist and unlocked circuit to iteratively produce input-output (IO) rela-
tionships [18]. These relationships are used to rule out all keys that do not produce the same
behavior, narrowing the space of possible circuit functionalities. The IO relationships are effi-
ciently learned through a three-step procedure: I. First, a miter circuit is used to determine an
input that is guaranteed to rule out at least a single key. A miter circuit consists of two copies of
the original circuit with the inputs tied together, the key inputs kept separate, and the outputs
connected to comparators. A diagram of the connections is shown in Fig. 1a. Additional key
constraints, such as timing and loop breaking, can be conjuncted with the miter output. A
SAT solver is used to find a setting of the shared input (I) and key inputs (K0,K1) such that
the output of the miter circuit is logic 1. By construction, the solution to the SAT problem
will have two different keys that, at that input value, disagree on the output value. The shared
input value found by the solver is termed a differentiating input (DI). II. Next, as depicted in
Fig. 1b, the learned DI is applied to the oracle circuit to determine the differentiating output
(DO), forming an input-output (IO) pair which the correct key must respect; any key that does
not conform to this IO pair is incorrect. III. Finally, as shown in Fig. 1c, the IO pair is added
as a constraint to the miter circuit for the next iteration. Now, any keys that satisfy the miter
circuit will also satisfy the learned IO relationship. While each relationship is guaranteed to rule
out at least one key, in practice, a larger portion of the key space is ruled out due to overlapping
key functionalities at a given input. These steps repeat, adding more constraints until the miter
circuit is unsatisfiable. At this point, any key that respects all learned IO relationships will be
a functionally correct key.

2.6 Strip-Functionality Locking

Strip-functionality locking refers to a class of logic locking techniques that share a similar locking
mechanism for directly defending against the miter-based SAT attack. This class includes
TTLock, TTLock*, SFLL-HD, and SFLL-Flex. The class is characterized by securing a circuit
through flipping a function’s output for a small portion of the input space. The set of flipped
inputs are referred to as protected inputs.

The generic structure of these techniques is shown in Fig. 2. The locked circuit consists of
two layers, flip and restore. Both make use of a function, P (I,K), that checks if an input, I, is
part of the protected set determined by the key, K. Different values of K will produce different
protected sets.

The flip layer contains the original function, f , and a instance of P with the key input hard
coded at the correct value, K∗. The outputs of both functions are XOR’d together, inverting
the original function for the protected inputs. We refer to the flip layer function as fflipped;
it is equivalent to f except at the flipped values. The restore layer contains another instance
of P , XOR’d with the output of the flip layer. When the key input, K, matches K∗, the
correct functionality of the original function is restored, each protected input value’s output
being flipped twice. We refer to the restore layer function as flocked.

The whole circuit is synthesized together, mixing and reducing the logic from both layers
along with K∗. In the given attack model, the adversary has access to this synthesized netlist.
It is likely that the restore P function remains intact as synthesis is unable to reduce the logic.
However, the flip P function and K∗ are usually combined with the logic of f such that they
are not recognizable via inspection.

These techniques resist the miter-based SAT attack because the overlap between the flipped
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Figure 2: Underlying structure of strip-functionality locking

input patterns for different keys is kept low. Thus, when an IO constraint is formed in the
miter-based SAT attack, only a small number of keys are ruled out at once. While the exact
scaling of the SAT-resistance depends on the specific technique, the class as a whole shows
greatest miter-based SAT attack resistance when the number of protected inputs is minimal.
Thus, there is an inherent trade-off between attack resistance and corruption of the circuit.

The specific techniques within the class are largely similar but each can be briefly described
as following. TTLock is the original technique in this class; the method flips a single input
pattern that is equal to the key. Thus in this incarnation, P is a equality function. TTLock*
is a version of TTLock which tries to mitigate any netlist-based attacks by converting the
locked circuit to a reduced order Boolean decision diagram and resynthesizing. Effectively, this
technique does a better job of mixing the f with the flip layer’s hard coded K∗ and P function.
SFLL-HD is a generalization of TTLock in which every input pattern a fixed Hamming distance
from the key is flipped. In SFLL-HD, P computes the Hamming distance between the key and
input, then compares this to a fixed value to determine if the input is protected. Finally, SFLL-
Flex stores a set of user-specified protected input patterns in a lookup table (LUT). In this
case, P is a function that is logic 0 for all inputs except the selected input values.

2.7 Boolean Sensitivity

Sensitivity is a simple complexity measure of a Boolean function [4]. Defined at a particular
value in the input space, it is the number of inputs Hamming distance 1 from a particular
input, for which the function produces a different value. Defined over the function, it is the
maximum sensitivity of all inputs. We can specify each case more formally given a Boolean
function, f : {0, 1}n → {0, 1} and an input value, x. If xi represents the input value with the
ith bit flipped, the sensitivity of f at x, s(f, x), is the following:

s(f, x) =

∑n
i=1 f(x)⊕ f(xi)

n

Thus, the sensitivity of f , s(f), is:

s(f) = max
x

s(f, x)
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Figure 3: Circuit that determines sensitivity where s(f, x) is the sensitivity of f at a given
input x and xi represents x with the ith bit flipped

Finally, we define the average sensitivity of f , s̄(f) as:

s̄(f) =

∑
x∈{0,1}n s(f, x)

2n

3 Sensitivity Analysis

Since sensitivity is an easily computed metric, we can use it to efficiently analyze locked circuits.
Ideally a secure locking scheme would leave no usable signal in the sensitivity domain. As we
will show, this is not the case for strip-functionality locking.

3.1 Sensitivity of Benchmark Circuits

To understand the behavior of sensitivity, we consider a set of benchmark circuits [3], which
are commonly used in the logic locking and circuit testing communities. Each circuit contains
several Boolean functions. For each function, f , we estimate the average sensitivity across all
inputs, s̄(f), and find the sensitivity of the function, s(f).

The average sensitivities are determined by sampling a set of randomly selected values in
the input space of each function. The sensitivity, s(f, x), is evaluated at each input value by
calculating the output value of the input value and all neighbors Hamming distance 1 away,
summing the number of disagreements. This random input selection is the same method used
to pick keys in the strip-functionality techniques, giving us an idea of the likely sensitivity of
the picked inputs.

To find the sensitivity of each function, s(f), we build a circuit that quantifies the sensitivity
at a given input. This circuit, shown in Fig. 3, is made up of n+1 copies of the function, where
n is the width of the function’s input. The inputs of the first copy of the function are tied to
the n additional copies in the following manner. If xj

i signifies the input of the jth function
with the ith bit flipped:

xi = x0
i : i ∈ (1...n)

The outputs are fed to comparators and subsequently a population count that determines the
sensitivity at the input. The circuit is loaded into a SAT solver and the output sensitivity value
is constrained to value, s. Starting from n, s is decremented until a satisfying assignment can
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Figure 4: Average sensitivity, s̄(f), of benchmark circuits from 50 samples

be found for the circuit. The first input found will have a sensitivity value, s/n, corresponding
to the sensitivity value of the function.

The results of this analysis are shown in Fig. 4 and 5. A clear trend in the average
sensitivities is seen in which the local sensitivity is inversely proportional to the input width.
From a designer’s perspective, this makes intuitive sense since specifying a complex function of
many inputs is difficult. A notable outlier is c6288, a multiplier circuit, which maintains a high
average local sensitivity for larger inputs. A similar scenario is seen for the function maximum
sensitivities. The trend remains roughly the same, just shifted upwards. Here we have just
captured the upper bound of the input sensitivities for each function.

3.2 Sensitivity of Strip-Functionality Circuits

Analyzing the effect of strip-functionality locking on a protected input’s sensitivity, we see that
the sensitivity is inverted. Consider a input value, xprotected, chosen at random to become a
protected input. In the original circuit, if the input has a low sensitivity, most inputs Hamming
distance 1 away will agree. Looking back at Fig. 2, the locking procedure will invert the output
value for this input value using the flip layer’s P function. This means that most of neighboring
inputs now disagree with the protected input. Specifically, where f is the original circuit and
fflipped is the locked circuit without the restoration circuitry (ie. just the flip layer), the new
sensitivity is:

s(fflipped, xprotected) = 1− s(f, xprotected)
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Figure 5: Sensitivity, s(f), of benchmark circuits

Thus, the protected input is moved to the opposite end of the sensitivity distribution. As
established in Section 3.1, the average sensitivity for typical circuits decreases as the function’s
input width increases. This implies that at a sufficiently large input width, if an input is
randomly selected as a protected pattern, the new sensitivity of this input will go from an
average low to an outlying high value. Selecting inputs with large input width is motivated
by increased brute force and miter-based SAT attack resistance. As the selection for the strip-
functionality techniques does not consider the sensitivity of the protected pattern, it is likely
that the protected input pattern will have a final input sensitivity that is an outlier in the high
end of the distribution. In the next section, we show how this signal can be targeted by an
attack.

3.3 Sensitivity-Based Attack

Using the same sensitivity quantifying circuit from Fig. 3, we can build an attack algorithm that
will detect inputs with high sensitivity. The first step in building such an attack is preprocessing
the locked circuit. We find a function, flocked, in the circuit which has the restoration unit in
its fan-in. This can be done by tracing the key inputs through the circuitry. The restoration
unit is disabled, creating a circuit functionally equivalent to fflipped. In TTLock, TTLock*,
and SFLL-Flex this entails adding constraints such that the input is not equal to the key. In
SFLL-HD, the Hamming distance between the input and key must not be at the fixed value.

After obtaining fflipped, we build the sensitivity quantifying circuit. We add a constraint
setting the unnormalized sensitivity to the maximum value, n (the input width of the function).
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Algorithm 1: Sensitivity-Based Attack

Input: n, f , fflipped

Output: xprotected

1 sen := n;
2 block := ∅;
3 while sen > 0 do
4 CNF := (s(fflipped, x) = sen) ∧ block;
5 if SAT[CNF ] then
6 xprotected := SAT ASSIGNMENTx[CNF ];
7 if f(xprotected) 6= fflipped(xprotected) then
8 return xprotected

9 end
10 block := block ∧ (xprotected 6= x);

11 else
12 sen := sen− 1;
13 end

14 end

This instance is put into a SAT solver searching for an input with this sensitivity level. The
sensitivity is decremented until a satisfying input is found. The satisfying input is then applied
to the oracle, f . If the output is the same as the simulated result from fflipped, a constraint
ruling out this input is added to a set of blocking clauses, block, and the process continues,
searching for the next highest sensitivity input. If the output is different, it is a protected
pattern. For TTLock and TTLock* this pattern is the key. For SFLL-Flex, this process must
be repeated until all protected inputs in the LUT are found. Finally, for SFLL-HD, a total of
three patterns with a mutual Hamming distance of twice the fixed value are found. The value
of each key bit is then determined by the taking majority of the discovered protected inputs.
The pseudo-code of the attack is listed in Algorithm 1.

4 Sensitivity Attack Resistant TTLock

For certain circuits, TTLock can be adapted such that the sensitivity-based attack is no longer
effective. We demonstrate this process to show the limits of our attack method, however, we
do not see this fixed TTLock as a viable locking method as the amount of output corruption is
too small to be meaningful.

Resisting the sensitivity-based attack can be achieved by selecting an input that, after
flipping its output value, is not a sensitivity outlier. This means locking an input that will
subsequently be moved to a dense part of the sensitivity distribution. Here, we implement an
algorithm that targets the average sensitivity as the final value. Resistance to the sensitivity-
based attack must be balanced with brute force and miter-based SAT attack resistance in which
the function’s input width determines the expected number of iterations. This entails locking
an output function that has at least a given number of inputs. Thus from all output functions
in the circuit with input width greater than the required value, we want to find the function,
f , and input value, x, such that:

arg min
x,f
|s̄(f)− (1− s(f, x))|

9
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Algorithm 2: Sensitivity Attack Resistant TTLock

Input: set of functions F , set of input widths N , set of average sensitivities A
Output: optimal protected input xprotected, function f

1 b := 0;
2 while b < max(N) do
3 for f ∈ F do
4 n := N [f ];
5 a := A[f ];
6 CNF := |a− (1− s(f, x))| ≤ b/n;
7 if SAT[CNF ] then
8 xprotected := SAT ASSIGNMENTx[CNF ];
9 return xprotected, f

10 end

11 end
12 b := b + 1;

13 end

Table 1: Sensitivity attack results for author-provided circuits using Cadence JasperGold

Technique Circuit Nbits Time(s) Niter

TTLock c5315 32 3 1
TTLock c7552 32 3 1

SFLL-HD DFX 256 (HD=32) 584 3

To find the optimal input, we first rule out all functions that do not meet the desired
brute force and miter-based SAT attack resistance. For each function in the list of remaining
functions, f ∈ F , we compute a mapping of input widths, N : f → n, and of estimates of the
average sensitivities, A : f → s̄(f), using the same method from Section 3.1. We then search
for the function and input pair which has a flipped sensitivity closest to the average value for
the function. This is done by iteratively relaxing a bound, b, until a function is found that has
an input with flipped sensitivity less than b/n from the function’s average sensitivity. After
finding the optimal input, it is flipped following the original TTLock method. The pseudo-code
of the algorithm to find the optimal protected input is shown in Algorithm 2.

Like TTLock, a sensitivity attack resistant version of SFLL-Flex can be easily created by
repeating this process multiple times. However, SFLL-HD is harder to make resistant to the
sensitivity-based attack. To avoid easy detection, all flipped inputs must have low sensitivity.
Finding a set of inputs with this property and are all a fixed Hamming distance from a common
value is unlikely.

5 Attack Results

To assess the strength of our sensitivity-based attack against strip-functionality locking as
well as our modified version of TTLock, we ran three experiments. First using a commercially
available tool, Cadence JasperGold, we demonstrate the attack’s applicability on a set of locked
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Table 2: Sensitivity attack results for generated circuits using Cadence JasperGold. For SFLL-
HD, HD=Nbits/8 and for SFLL-Flex, Npatterns =Nbits/8.

TTLock TTLock* SFLL-HD SFLL-Flex TTLock-Sen
Circuit Nbits Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter

c499 32 1 2 70 6 2 3 8 25 timeout 3106
c880 32 1 1 4 4 2 4 3 8 timeout 3480
c1355 32 1 3 3849 181 2 3 5 14 timeout 3492
c1908 32 1 1 18 2 3 4 3 6 timeout 3339
c2670 32 1 1 6 1 2 3 2 4 68 62
c2670 64 1 1 5 1 4 3 7 8 70 62
c3540 32 2 2 24 1 2 3 2 6 timeout 2096
c5315 32 2 3 1 1 2 3 2 5 timeout 3028
c5315 64 4 9 3 1 4 3 10 14 24 26
c7552 32 1 1 4 1 3 3 69 16 timeout 2700
c7552 64 2 1 19 1 3 3 4 4 timeout 2568
c7552 128 4 1 16 1 14 3 9 8 timeout 1670

Table 3: Sensitivity attack results for generated circuits using the SAT solver CaDiCaL. For
SFLL-HD, HD = Nbits/8 and for SFLL-Flex, Npatterns = Nbits/8.

TTLock TTLock* SFLL-HD SFLL-Flex TTLock-Sen
Circuit Nbits Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter Time(s) Niter

c432 32 0.20 1 0.15 1 0.67 3 0.63 4 timeout 11018
c499 32 0.06 2 26.64 1 0.36 3 57.14 918 timeout 12243
c880 32 0.07 1 0.14 1 0.67 3 0.37 4 timeout 13159
c1355 32 65.21 989 1271.27 377 0.59 3 425.36 2982 timeout 11938
c1908 32 0.13 1 0.67 1 1.08 3 0.46 4 timeout 17602
c2670 32 0.05 1 0.05 1 0.43 3 0.19 4 1.03 1
c2670 64 0.06 1 0.10 1 1.27 3 0.49 8 4.49 1
c3540 32 0.34 2 9.55 1 0.69 3 0.27 4 timeout 3442
c5315 32 0.19 3 0.04 1 1.58 3 0.31 4 timeout 13670
c5315 64 0.12 1 0.07 1 2.82 3 0.99 8 2.81 1
c7552 32 0.05 1 0.10 1 0.38 3 0.16 4 timeout 10079
c7552 64 0.07 1 0.72 1 2.11 3 0.53 8 timeout 12286
c7552 128 0.08 1 0.08 1 5.78 3 2.06 16 timeout 7667

benchmarks provided by the authors of the respective techniques from the strip-functionality
class. To further validate these results, we then extend this analysis to an additional set of
generated locked circuits. Finally, we implement the attack using open source tools and repeat
the analysis on the generated circuits.

All attacks are run using a 64GB, 24-core, 2.2GHz machine. JasperGold, the commercial
tool, is a formal verification suite that uses a parallel execution strategy attempting to find
a solution employing several different solvers at once. In this case, our attack algorithm is
implemented in TCL, a widely adopted scripting language used in digital IC design tools.
Our open source flow, uses the CaDiCaL SAT solver [1] and Python to implement the attack
algorithm. For all experiments, we limit each run to a timeout of 4 hours. The implementation
of this flow can be found in our repository1.

1https://github.com/jpsety/sensitivity_attack
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In Table 1, we present the results of our attack on the circuits provided by the authors.
For each circuit we show the number of bits used to lock it, the overall time to execute the
attack, and the number of iterations (the number of inputs checked in the oracle). As seen, all
circuits are broken, most in seconds, the largest in minutes. This is significantly faster than the
expected miter-based SAT attack time which scales exponentially in the width of the key. As
sensitivity is not considered in these locking schemes, in all cases the protected inputs are the
highest sensitivity inputs keeping the required number of iterations small.

For the next experiments, we implement the strip-functionality locking techniques and lock
a commonly used set of benchmark circuits [3]. We generate locked circuits starting at 32 key
bits, doubling the count until the circuit no longer has a function with at least that input
width. We set both the Hamming distance used in SFLL-HD and the number of patterns used
in SFLL-Flex to Nbits/8. Since the protected inputs are chosen randomly and thus will likely
have high sensitivity after being flipped, the impact of these parameter choices will likely have
negligible effect on the attack result. Immediately clear from the locking procedure is that the
smaller circuits don’t contain a Boolean function with input width large enough to provide
adequate security against a brute force attack; only three of the tested circuits can scale to
64 bits. However, since the functions with lower input width are likely to have higher average
sensitivities and thus a lower chance of a protected input being an outlier, these circuits should
be the most resistant to our attack.

The commercial tool attack results for the generated locked circuits shown in Table 2. We
are able to deobfuscate all circuits locked with previous strip-functionality methods. With the
exception of a few outliers, all protected inputs are found in the several attack iterations and in
seconds of run time. The results for the sensitivity attack resistant version are mixed depending
on the circuit and the number of bits. Two notable examples are c2670 and c5315. The first
circuit, c2670, has very few high-sensitivity inputs; thus, when it is locked with our flow, the
protected input is still in the highest portion of the sensitivity distribution. The second circuit,
c5315, has a suitable protected input for the 32-bit locking, but not for the 64-bit. Therefore,
in this circuit there is a distinct tradeoff between sensitivity attack and miter-based SAT attack
resistance. In general, it is clear that the resistance of this locking technique is highly circuit
dependent.

Finally, in Table 3, we show the open source flow results for the generated circuits. The
results are similar to the commercial flow, however the execution times are lower. All previous
strip-functionality circuits are again deobfuscated and the sensitivity attack resistant TTLock
circuits have matching results. The open source flow is able to explore a greater portion of the
input space in the allotted time.

6 Discussion

The strip-functionality class of techniques was developed in response to the miter-based SAT
attack. For previous locking schemes, the miter-based attack ruled out large portions of the
key space with each learned IO pair. Strip-functionality locking minimizes the number of keys
ruled out per IO pair by minimizing the number of protected inputs per key. As the authors
of these techniques have noted, the small number of protected inputs decreases the amount of
corruption in the circuit under an incorrect key. The trade-off is unsatisfying: the attacker has
a harder time searching for the incorrect inputs, but the probability of those incorrect inputs
being encountered reduces just as much.

Even further, we have shown that Boolean sensitivity is a strong signal to detect the few
protected inputs. Under the right lens, what may seem to be an undetectable change becomes
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obvious. Thus, this class of techniques has a tradeoff between miter-based SAT attack resistance
and sensitivity attack resistance. The result is a narrowed set of situations under which strip-
functionality locking is applicable.

We provide a means to find inputs that will not be easily detected with the sensitivity
attack via the sensitivity attack resistant TTLock. However, the locked circuits must have high
sensitivity nodes that can be moved into denser areas of the sensitivity distribution, making the
security of the technique highly circuit dependent. Notable examples that have this property
are cryptographic circuits and algebraic circuits. While both classes of circuits will likely have
many inputs that can be hidden from the sensitivity attack, it should be noted that these classes
are highly regular structures that may be subject to different types of analysis.

Furthermore, if our version of TTLock or a similar construction is used, it would be prudent
to more accurately characterize the sensitivity distribution before selecting inputs to lock. This
could be done using approximate model counting techniques [16] on the sensitivity circuit.
Additionally, it should be noted that the sensitivity attack speed can likely be substantially
improved via parallelism and utilization of AllSAT solvers. Finally, we make no claims as to
the security of our proposed technique against other attack methods.

7 Conclusion

In this paper, we have used Boolean sensitivity to analyze circuits obfuscated with a class of
logic locking techniques. We show that if the locking procedure does not consider the sensitivity
during insertion, the locked circuit will likely be easily deobfuscated by our attack. We present a
scheme to avoid such attacks, however the resulting resistance will be highly circuit dependent.

In future work we want to further explore how to make circuits resistant to SAT-based
attacks. Many families of small formulas are known to be hard for today’s solvers ranging from
uniform random formulas [5] to theoretical challenges and instances designed to obstruct state-
of-the-art solver techniques [7, 20]. Most small hard formulas are unsatisfiable, but some are
also satisfiable [8], which is required for circuit locking. We consider it an important challenge to
determine whether small formulas that are hard for SAT solvers can be turned into an effective
locking method.
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