
Efficient Extraction of Skolem Functions
from QRAT Proofs

Marijn J.H. Heule
The University of Texas at Austin

marijn@cs.utexas.edu

Martina Seidl and Armin Biere
Johannes Kepler University, Linz
{martina.seidl, biere}@jku.at

Abstract—Many synthesis problems can be solved by formu-
lating them as a quantified Boolean formula (QBF). For such
problems, a mere true/false answer is often not enough. Instead,
expressing the answer in terms of Skolem functions reflecting
the quantifier dependencies of the variables is required. Several
approaches have been presented to extract such functions from
term-resolution proofs. However, not all solvers and preproces-
sors are able to produce term-resolution proofs, especially when
universal expansion is involved. In previous work, we developed
the QRAT proof system consisting of three simple rules which
allowed us to overcome this issue and to equip modern expansion-
based tools like the preprocessor bloqqer with proof tracing. In
this paper, we show how to extract Skolem functions from QRAT
proofs. We present a general extraction tool and compare its
performance to similar resolution-based tools. We show that the
Skolem functions extracted from QRAT proofs are smaller than
those produced by alternative approaches making our method in
particular useful for synthesis applications.

I. INTRODUCTION

Synthesis problems, which aim at the automatic derivation
of an implementation from a given specification, typically ask
whether for all possible inputs by the environment there exists
a strategy for the system such that certain properties like safety
hold. If the answer is positive, then this strategy provides
the means to synthesize the required implementation of the
system which by construction obeys the given specification.
Therefore, a tool solving such a synthesis problem should
not only provide a yes/no answer, but also a strategy of the
specification in the case of realizability.

A natural way to encode synthesis problems is offered
by quantified Boolean formulas (QBFs) [1], [2], which ex-
tend propositional logic by quantifiers over propositional
variables [3]. The QBF formalism provides a convenient
framework for modeling finite two-player games [4] which
is reflected by the popular game-based view on the semantics
of QBFs. Here, the evaluation of a QBF is described as a
game between the existential player who owns the existential
variables and the universal player who owns the universal
variables of the formula. The existential player wants to satisfy
the formula, while the universal player wants to falsify the
formula. The moves are assignments to the variables, where
the order of the variables in the quantifier prefix has to be
respected. If the formula is satisfiable, then there exists a
strategy for the existential player to always win the game and
respectively, there is a strategy for the universal player to win
the game if the formula is unsatisfiable.

By using existential and universal quantification, QBFs
allow for exponentially more succinct encodings than propo-
sitional logic, with the consequence that the satisfiability
problem of QBF is PSPACE-complete [3]. Therefore, the
field of application of QBF ranges from efficient encodings
of verification problems like model checking tasks to plan-
ning (see [2] for a survey on QBF applications).

All these applications have in common that they require
models if the formula encoding the application problem is
satisfiable. Whereas in SAT a model is given by a variable
assignment, in QBF the situation is more complicated [5]. A
model is an assignment tree giving a winning strategy to the
existential player. In practice, a more compact representation
than given by an assignment tree is required. To this end,
the concept of Skolem functions, which for example are
used in first-order logic to eliminate existential quantifiers, is
transferred to the context of QBF [5]. A Skolem function for an
existential x variable is a Boolean function over the universal
variables preceding x in the quantifier prefix.

Today, it is known how Skolem function extraction can
be realized in the context of DPLL-based QBF solving [6],
which is the solving paradigm realized by most state-of-the-art
solvers. Basically, the possibility of search-based approaches
is exploited to generate term-resolution proofs from which
winning strategies for the existential player can be gener-
ated [7], [8]. Unfortunately, this approach does not apply
to expansion-based techniques [9], [10], which have been
shown to be extremely powerful if realized in preprocessors.
Until recently, it was not possible to generate any proofs
when preprocessing is applied, because it is an open question
if expansion can be simulated by resolution [11]. However,
when preprocessing is restricted or even omitted, the solving
performance drastically decreases. To overcome this issue,
we presented the QRAT proof system [12] which is able
to capture all state-of-the-art preprocessing techniques by a
few simple rules. We could further show that emitting QRAT
proofs causes only small overhead and that the validation of
QRAT proofs is computationally cheap. Hence we were able to
provide a tool to certify the result of a preprocessor efficiently.

In this paper, we go one step further and show how to extract
Skolem functions from QRAT proofs of satisfiability. With
this work we solve one important issue hindering the practical
application of QBF. Moreover, the size of the Skolem func-
tions that we extract is smaller when compared to alternative



approaches.
In the following, we first recapitulate QBF basics in Sec-

tion II and review literature in Section III. Then we introduce
the QRAT proof system in Section IV which is the basis for the
Skolem function extraction approach presented in Section V.
Implementation details are discussed in Section VI, followed
by an experimental evaluation in Section VII. Finally, we
conclude this paper with an outlook to future work.

II. PRELIMINARIES

The language of QBF extends the language of propo-
sitional logic by existential and universal quantifiers over
the propositional variables. As usual, we assume a QBF to
be in prenex conjunctive normal form (PCNF).1 A QBF in
PCNF has the structure Π.ψ where the prefix Π has the
form Q1X1Q2X2 . . . QnXn with disjoint variable sets Xi and
Qi ∈ {∀,∃}. The formula ψ is a propositional formula in
conjunctive normal form, i.e., a conjunction of clauses. A
clause is a disjunction of literals and a literal is either a variable
(positive literal) or a negated variable (negative literal). The
variable of a literal is denoted by var(l) where var(l) = x
if l = x or l = x̄. The negation of a literal l is denoted by
l̄. The quantifier Q(Π, l) of a literal l is Qi if var(l) ∈ Xi.
Let Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k if i ≤ j.
We sometimes write formulas in CNF as sets of clauses and
clauses as sets of literals. We consider only closed QBFs,
so ψ contains only variables which occur in the prefix. The
variables occurring in the prefix of φ are given by vars(φ). The
subformula ψl consisting of all clauses of matrix ψ containing
literal l is defined by ψl = {C | l ∈ C,C ∈ ψ}. By >
and ⊥ we denote the truth constants true and false. QBFs are
interpreted as follows: a QBF ∀xΠ.ψ is false iff Π.ψ[x/>]
or Π.ψ[x/⊥] is false where Π.ψ[x/t] is the QBF obtained by
replacing all occurrences of variable x by t. Respectively, a
QBF ∃xΠ.ψ is false iff both Π.ψ[x/>] and Π.ψ[x/⊥] are
false. If the matrix ψ of a QBF φ contains the empty clause
after eliminating the truth constants according to standard
rules, then φ is false. Accordingly, if the matrix ψ of QBF φ
is empty, then φ is true. Two QBFs φ1 and φ2 are satisfiability
equivalent (written as φ1 ∼ φ2) iff they have the same truth
value. Two QBFs φ1 and φ2 are logically equivalent (written
as φ1 ≈ φ2) if they have the same set of (counter) models.

Whereas in propositional logic a model of a formula is given
by a satisfying variable assignment, for a QBF a model has
to reflect the variable dependencies between existential and
universal variables. Hence, QBF models are either expressed
in form of subtrees of assignment trees or as Skolem functions.

Definition 1. Let x be an existential variable of φ = Π.ψ
and let y1, . . . , yn be all universals of φ with yi ≤Π x. Then
a propositional formula fx(y1, . . . , yn) is a Skolem function
for x, and called valid iff φ[x/fx] ∼ φ. A set of Skolem
functions F which contains exactly one Skolem function for

1Note that any QBF of arbitrary structure can be efficiently transformed to
a satisfiable equivalent formula in PCNF.

every existential x is called a Skolem set. It is called valid iff
it only contains valid Skolem functions.

Obviously, for any satisfiable QBF φ, a valid Skolem set F
gives a strategy for the existential player to satisfy the formula.
In the remainder of this paper, given a QBF Π.ψ containing
an existential variable x, the function fx(U) denotes a Skolem
function for x with the set of universal variables U that are
outer to x in Π, as parameters.

To check that a Skolem set F is valid, it is necessary to
substitute in φ all existential variables by their corresponding
Skolem functions in F and check that the resulting proposi-
tional formula is valid. This can be done by a SAT solver.
In practice, it also needs to be checked that a given Skolem
function for x also does not contain universal variables yi with
yi ≥Π x. This syntactic criterion can easily be checked. Thus
while the satisfiability checking problem of QBF is PSPACE
complete, checking validity of a Skolem set is in co-NP [5].

We conclude the preliminary section by introducing the
concept of asymmetric literal addition.

Definition 2 (Asymmetric Literal Addition). Given a QBF
Π.ψ and a clause C. The clause ALA(ψ,C) is the unique
clause obtained by repeatedly applying the extension rule

C := C ∪ {l̄} if ∃l1, . . . , lk ∈ C and (l1 ∨ . . . ∨ lk ∨ l) ∈ ψ

called asymmetric literal addition to C until fixpoint.

Asymmetric literal addition is indifferent with respect to
the quantification type of the involved literals. Originally it
was introduced for propositional logic in order to uniformly
characterize preprocessing and inprocessing techniques [13].
It turned out that asymmetric literal addition is the basis for
several powerful redundancy criteria which allow to safely
add and delete clauses in propositional logic. As ALA is
model preserving, for any QBF φ = Π.ψ∧{C} holds that
φ ≈ φ[C/C ′] where C ′ = ALA(ψ,C) [12].

III. RELATED WORK

The importance of Skolem function generation for true
QBFs has been acknowledged to be a vital problem. Yet for a
long time, only solvers internally working with Skolemization
like Skizzo [14] and squolem [15] as well as the BDD-based
solver ebddres [16] were able to produce Skolem functions.
All three solvers are not maintained any more and to best
of our knowledge no recent solver is built based on internal
Skolemization. Instead, only two solving paradigms which
have shown to be successful over the last years: most solvers
implement a variant of the search-based DPLL algorithm [6]
with clause and cube learning which is closely related to the
techniques found in state-of-the-art SAT solvers. On the other
hand, expansion-based systems [17], [9], [10] are developed
which use variable elimination and universal expansion for
simplifying a formula. The latter techniques have been shown
to be extremely powerful when used as preprocessing steps
where they are not applied until completion but where they
just transform the formula such that it becomes easier to solve
for full search-based solvers.



TABLE I
THE QRAT PROOF SYSTEM

Rule Preconditions Postconditions

(N1) Π.ψ
ATE(C)−−−−→ Π.ψ\{C} C is an asymmetric tautology

(N2) Π.ψ
ATA(C)−−−−→ Π′.ψ ∪ {C} C is an asymmetric tautology

Π′ = Π∃X with
X = {x | x ∈ vars(C), x 6∈ vars(Π)}

(E1) Π.ψ
QRATE(C,l)−−−−−−−→ Π.ψ\{C}

C ∈ ψ, Q(Π, l) = ∃
C has QRAT on l w.r.t. ψ

(E2) Π.ψ
QRATA(C,l)−−−−−−−→ Π′.ψ ∪ {C}

C 6∈ ψ, Q(Π, l) = ∃
C has QRAT on l w.r.t. ψ

Π′ = Π∃X with
X = {x | x ∈ vars(C), x 6∈ vars(Π)}

(U1) Π.ψ ∪ {C} QRATU(C,l)−−−−−−−→ Π.ψ ∪ {C\{l}}
l ∈ C, Q(Π, l) = ∀
C has QRAT on l w.r.t. ψ

(U2) Π.ψ ∪ {C} EUR(C,l)−−−−−−→ Π.ψ ∪ {C\{l}}
l ∈ C, Q(Π, l) = ∀
C has EUR on l w.r.t. ψ

For solvers and tools which are able to produce term-
resolution proofs, the approaches presented by Balabanov and
Jiang [7] and presented by Goultiaeva and Van Gelder [8] can
be applied to extract strategies from the proofs. With these
works it became possible to generate certificates for search-
based solvers.

For expansion-based solvers and tools, however, the situa-
tion is different. As soon as universal expansion is involved in
the solving process, it remains an open question if and how it
can be translated to resolution. Therefore, it is not possible to
produce resolution proofs for expansion-based systems [11],
what was especially problematic if a formula is only solv-
able by the application of universal expansion. In previous
work [18], we showed how to produce partial certificates for
the variables of the outermost quantifier block, but here only
single variable assignments are involved. Janota et al. [19]
proposed to use only techniques that can be translated into
resolution in order to bring certification and Skolem function
extraction to state-of-the-art preprocessing. However, then the
preprocessor looses a lot of its power.

To avoid any restriction of the applicable techniques when
certification is required, we introduced the QRAT proof sys-
tem [12] which is able to capture universal expansion as well
as all state-of-the-art preprocessing techniques by three simple
rules which can be checked easily. The obvious question is
how to extract Skolem functions from such proofs which we
answer in this paper.

IV. QRAT: QUANTIFIED RESOLUTION ASYMMETRIC
TAUTOLOGIES

The QRAT proof system which we introduced in [12] is the
first proof system for QBFs which captures all preprocessing
techniques as well as expansion-based solving. The rules of
the proof system are shown in Table II. The basic idea is to use
syntactic redundancy criteria to add, remove, or modify clauses

until the truth value of the formula is known. Soundness of the
rules is shown in [12], completeness follows from the fact that
the QRAT proof system simulates resolution. Please note that
for the sake of readability, we work with a definition consisting
of six rules in this paper instead of the more compact three
rule variant of our QRAT proof format [12], where (N1)+(E1),
(N2)+(E2), as well as (U1)+(U2) form the three rules. By
splitting up the rules in six rules, we do not gain any additional
expressiveness, but it allows us a more focused view on the
problem of extracting Skolem functions. As we will see only
those rules are relevant which delete clauses in a satisfiability
preserving manner. This applies to (E1) only. Further, this
allows us to present the rules irrelevant for the Skolem function
extraction in an intuitive by abstracting from the concrete
technical details. For the complete formal definition of the
proof system, we kindly refer to [12].

The rules (N1) and (N2) eliminate and respectively add
asymmetric tautologies (AT). A clause C is an asymmetric
tautology w.r.t. a QBF Π.ψ iff ALA(ψ,C) is a tautology. As
the addition of asymmetric literals is model preserving, it holds
that Π.ψ ≈ Π.ψ ∪C iff ALA(ψ,C) is a tautology. Hence, the
application of (N1) and (N2) is model preserving [12].

Rule (E1) and (E2) apply the QRAT redundancy criterion
which is defined below.

For some intuition about QRAT consider the following
scenario. Let Π.ψ be a QBF formula, C a clause, and l a
literal in C. We are interested in the situation that for every
assignment satisfying ψ and falsifying C, it holds that all
clauses Di ∈ ψ with l̄ ∈ Di are satisfied on literal k ∈ Di with
k 6= l̄, k ≤Π l. As all clauses Di with l̄ ∈ Di are satisfied by
at least two literals if C is falsified by a variable assignment
σ, the assignment can be modified by flipping the value of
l such that C becomes satisfied while all Di stay satisfied.
Hence, the addition of C to φ preserves satisfiability and the



deletion of C to φ preserves unsatisfiability. The reasoning for
QRAT is similar and uses the following three definitions.

Definition 3 (Outer Clause). Let C be a clause occurring in
QBF Π.ψ. The outer clause of C on literal l ∈ C, denoted by
O(Π, C, l), is given by the clause {k | k ∈ C, k ≤Π l, k 6= l}.

Definition 4 (Outer Resolvent). Let C be a clause with l ∈ C
and and D a clause occurring in QBF Π.ψ with l̄ ∈ D. The
outer resolvent of C with D on literal l w.r.t. Π, denoted by
R(Π, C,D, l), is given by the clause O∪(C\{l}) if Q(Π, l) =
∀ and by O ∪ C if Q(Π, l) = ∃ assuming O = O(Π, D, l̄).

Definition 5 (Quantified Resolution Asymmetric Tautology
(QRAT)). Given a QBF Π.ψ and a clause C. Then C has
QRAT on literal l ∈ C with respect to Π.ψ iff it holds for all
D ∈ ψl̄ that ALA(ψ,R) is a tautology for the outer resolvent
R = R(Π, C,D, l).

The rules (U1) and (U2) eliminate universal variable occur-
rences for which redundancy criteria ensure that on those the
universal player will never be forced to use them to satisfy the
clauses. In particular, if a clause C has QRAT on universal
literal l w.r.t. to a QBF φ = Π.ψ with C ∈ ψ, then it
can be shown that removing l from C preserves satisfiability.
This rule subsumes universal pure literal elimination (i.e.,
literals occurring in one polarity), which is a indispensable
rule for state-of-the-art QBF solvers. Finally, the rule (U2)
allows the elimination of a universal literal by the means of
extended universal reduction [12]. Universal reduction is part
of the resolution calculus for QBFs. It removes a literal l
from a clause C iff C does not contain any existential literal
occurring left of l in the prefix. From the game view this means
that whenever the universal player has to assign l, he can
immediately falsify the clause, because there is no existential
literal left allowing the existential player to satisfy the clause.
The idea behind extended universal reduction goes in a similar
direction, but here existential literals right of l in the prefix are
allowed if they have certain properties. As these properties are
irrelevant for the remainder of this paper, we refer the reader
to [12] for the details.

Example 1. Consider the true QBF Π.ψ = ∀a ∃b, c.(a ∨ b) ∧
(ā∨ c)∧ (b∨ c̄). Clause (a∨ c) has QRAT on c w.r.t. Π.ψ: the
only clause that contains literal c̄ is (b ∨ c̄), which produces
the outer resolvent (a ∨ b ∨ c). Since ALA(ψ, (a ∨ b ∨ c)) =
(a∨ ā∨ b∨ b̄∨ c∨ c̄) is a tautology, QRATA can add (a∨ c) to
ψ. Now, consider a new existential variable d in the innermost
quantifier block. The clause (b̄ ∨ c ∨ d) has QRAT on c (and
d) w.r.t. ψ. Adding (b̄∨ c∨d) to ψ will result in the true QBF
∀a ∃b, c, d.(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ c̄) ∧ (b̄ ∨ c ∨ d).

Definition 6 (Outer Formula). Let l be a literal occurring in
QBF Π.ψ. The outer formula of l, denoted by OF(Π, F, l),
is {O(Π, D, l̄) | D ∈ ψ, l̄ ∈ D}.

If a clause C has QRAT on l ∈ C w.r.t. a QBF formula Π.ψ,
we know that: 1) if the outer formula OF(Π, ψ, l) is falsified
by an assignment then C is satisfied by that assignment; and 2)

the outer formula OF(Π, ψ, l) is satisfied by an assignment,
then l can be assigned to true, thereby satisfying C. We use
this property of QRAT clauses to construct Skolem functions.
Given a QBF formula Π.ψ, a valid Skolem set F for Π.ψ and a
clause C that has QRAT on l ∈ C w.r.t Π.ψ. We can now make
a valid Skolem set F ′ for Π.ψ∧{C} by updating the Skolem
function fvar(l)(U) as follows. First, create a new variable y
and make fy(U) := fvar(l)(U). Second, replace fvar(l)(U) by
the function stating that if OF(Π, ψ, l) evaluates to true then
return polarity of l else return fy(U).

V. FROM PROOF VALIDATION TO SKOLEM FUNCTIONS

In earlier work [12], we showed how to validate QRAT
proofs. In this section, we describe how to extend that method
to obtain Skolem functions after a satisfaction proof, i.e., a
proof for a true QBF, has been validated. We start with a brief
discussion on how to validate satisfaction proofs. Afterwards,
we explain how to integrate the extraction of Skolem functions
into the checking. We end this section with a running example
of the algorithm.

A. Validating QRAT proofs

QRAT proofs are sequences of clause additions and
deletions. They are build using three kind of lines: addi-
tion (N2+E2), deletion (N1+E1), and universal elimination
(U1+U2). In the QRAT proof format, addition lines have no
prefix and are unconstrained in the sense that one can add any
clause at any point in the proof. Clause deletion lines have
prefix “d”, while universal elimination lines have prefix “u”.
Both are restricted in the following way: the clause after a “d”
or “u” prefix must be either present in the original formula
or as a clause added earlier in the proof. For satisfaction
proofs, a universal elimination line can be replaced by a clause
addition (N2) and clause deletion line (N1). We assume that
all universal elimination lines have been replaced and ignore
their existence for the remaining part of the paper.

Fig. 1 shows the basic algorithm to validate QRAT proofs.
Let us ignore line 1,2, 9, and 13 for the moment, because they
are only required to produce Skolem functions. We loop over
the clauses in the proof in the order of how a QBF solver
or preprocessor added or removed clauses (line 3). The first
unexamined clause is obtained from the proof together with its
flag and pivot (line 4). The flag can be either add or delete
(in the proof format no prefix or a “d” prefix, respectively).
If the flag is add, no checking is required because this is
a strengthening step. The new clause is simply added to ψ
(line 11). Else, the clause will be removed (line 6). This
elimination step needs to be validated. We check if the clause
is logically implied by ψ by computing whether the clause
is an asymmetric tautology (line 7). If that is not the case,
the clause needs to have QRAT w.r.t. ψ (line 8), otherwise
the proof is invalid (line 10). This procedure continues until
all clauses in the proof have been processed. At this point,
ψ should be empty, showing that the original formula is
satisfiability equivalent to the empty formula. If ψ is empty,
the proof is valid (line 14), otherwise it is invalid (line 12).



validateQRAT (QBF formula Π.ψ, QRAT proof P )
v1 let V = vars(P )

v2 initSkolem (Π, V )
v3 while P 6= ∅ do
v4 〈flag, l, C〉 := P.dequeue()

v5 if flag = delete then
v6 ψ := ψ \ {C}
v7 if ALA(ψ,C) is a tautology then continue
v8 else if C has QRAT on l ∈ C w.r.t. Π.ψ then
v9 addSkolem (Π.ψ, C, l)

v10 else return ‘INVALID PROOF’
v11 else ψ := ψ ∪ {C}
v12 if ψ 6= ∅ then return ‘INVALID PROOF’
v13 finishSkolem (V )
v14 return ‘VALID PROOF’

Fig. 1. Procedure to check QRAT proofs and output Skolem functions.

B. Extracting Skolem Functions

The basic QRAT validation algorithm can easily be en-
hanced to produce Skolem functions. In Fig. 1 this is shown
by the lines 1 and 2 (initialization), line 9 (producing Skolem
functions), and line 13 (termination). Notice that although
the QRAT proof system uses six rules, recall Table II, the
Skolem functions only depend on one of them, i.e., quantified
resolution asymmetric tautology elimination (E1). The reason
why only E1 has be to taken into account is that the other
procedures either strengthen ψ or preserve logical equivalence.

Fig. 2 shows the procedures used to extract the Skolem
functions. An important part of the procedure is the global
array last which contains for each variable in the QRAT proof
a pointer to the last variable on which its Skolem function
depends. Initially, see initSkolem, last[x] := x for existential
variables and last[x] := 0 for universal variables, since there
are no Skolem functions for universal variables. After the
QRAT proof has been validated, the Skolem functions of all
variables x pointed to in the last array, a Skolem function
fx(U) is added that is always true (>), see finishSkolem.

The real work is done in the addSkolem procedure. This
algorithm is inspired on the solution reconstruction procedure
for RAT proofs, the variant of QRAT for propositional (SAT)
formulas [20]. The algorithm works as follows: pick an
arbitrary assignment. Loop over all clauses in the RAT proof in
reverse order. If a clause is falsified by the current assignment,
flip the truth value of the pivot. In order to make this algorithm
produce Skolem functions out of QRAT proofs, some changes
have to be made. Most importantly, we need to respect the
quantifier prefix, because Skolem functions cannot depend on
variables that are more inner w.r.t. the quantifier prefix.

The addSkolem procedure uses two sub-procedures of
which the pseudo-code is not shown: pol(l) and eval(F ). The

procedure pol(l) simply returns the polarity of literal l, i.e.,
> if l is a positive literal and ⊥ if l is a negative literal.
The procedure eval(F ) returns the clause set F under the
current Skolem functions. It replaces each positive literal x
with flast[x](U) and each negative literal x̄ by ¬flast[x](U). For
example, the expression eval((a ∨ b̄) ∧ (c)) will be replaced
by (flast[a](U) ∨ ¬flast[b](U)) ∧ flast[c](U).

At the end of Section IV, we discussed how to update
Skolem functions when adding a QRAT clause C. This update
step requires to evaluate the outer formula of the pivot. The
outer formula can be large which in turn would make the
Skolem functions large. Therefore, we first check whether we
can avoid computing the outer formula. This can be done when
C ′, a copy of C with all inner literals to the pivot removed, has
QRAT as well. In that case, we only need to check whether
the outer clause of C w.r.t. the pivot is falsified.

Now we have all elements to explain the addSkolem
procedure. A new existential variable y is created (line 2).
Afterwards, we compute C ′, a copy of C with all inner literals
to the pivot are removed (line 3). If C ′ has QRAT on l w.r.t.
Π.ψ (line 4) then the Skolem function for the pivot becomes
as shown in the pseudo-code on line 5. Otherwise, we need
to compute the outer formula of the pivot (line 7) and use it
for the Skolem function (line 8). The procedure terminates by
updating the last array using y (line 9).

initSkolem (prefix Π, set of variables V )
iS1 forall x ∈ V do
iS2 if Q(Π.x) = ∀ then last[x] := 0 else last[x] := x

addSkolem (QBF formula Π.ψ, clause C, literal l)
aS1 let x be last[var(l)]

aS2 let y be a new existential variable
aS3 let C ′ := {k ∈ C | k ≤Π l}
aS4 if C ′ has QRAT on l w.r.t. Π.ψ then
aS5 fx(U) := if(eval(O(Π, C, l)) then fy(U) else pol(l)

aS6 else
aS7 let F :=

∧
D∈ψ O(Π, D, l̄) with l̄ ∈ D

aS8 fx(U) := if(eval(F )) then pol(l) else fy(U)

aS9 last[var(l)] := y

finishSkolem (set of variables V )
fS1 forall x ∈ V do
fS2 if last[x] 6= 0 then flast[x](U) := >

Fig. 2. Procedures to init, add, and finish Skolem functions.

C. Running Example

The true QBF formula below will be used to illustrate how
the extraction of Skolem functions from a QRAT proofs works:

Π.ψ := ∃a, b∀x, ∃c.(a ∨ b) ∧ (ā ∨ b̄) ∧ (ā ∨ x ∨ c) ∧ (x̄ ∨ c̄)



true QBF formula in DIMACS

p cnf 4 4
e 1 2 0
a 4 0
e 3 0

1 2 0
-1 -2 0

-1 3 4 0
-3 -4 0

satisfaction QRAT proof

d -2 -1 0
2 3 4 0

d -1 3 4 0
d 1 2 0
d 2 3 4 0
d -3 -4 0

Fig. 3. A true QBF (left) with a satisfaction proof (right). The formula
and proof are spaced to improve readability. Proofs consist of two kind
of lines: addition (no prefix) and deletion (“d ” prefix). The formula and
proof represent our running example in the DIMACS and QRAT format,
respectively. Variables in both formats are numbers. The following mapping
is used a corresponds to 1, b to 2, c to 3, and x to 4. Negative literals are
shown as negative numbers.

Fig. 3 shows how this formula looks in the QDIMACS format,
which is used by most QBF solvers and preprocessers (left)
and a QRAT proof for that formula. Notice that in QRAT
proofs, the pivot of clause C is the first literal appearing in
the clause deletion line corresponding to C. The initialization
of Skolem functions will assign the last array as follows:
last[a] := a, last[b] := b, last[c] := c, and last[x] := 0.

The proof consists of the following steps. First, C := (ā∨ b̄)
is removed from ψ using b̄ as pivot. Since C has no inner
literals, C ′ := C and consequently C ′ has QRAT on b̄ w.r.t.
the new ψ (from which C has been removed). We introduce
a new existential variable b1. Now the Skolem function fb(U)
will be – with eval(ā) replaced by ¬fa(U), and pol(b̄) by ⊥:

fb(U) := if(¬fa(U)) then fb1(U) else⊥

The second step in the proof is adding clause (b ∨ x ∨ c)
to ψ. Since this involves clause addition, no Skolem function
is added. The third step is the most tricky one. Clause C :=
(ā ∨ x ∨ c) is now removed using pivot ā and checked for
redundancy. Both x and c are inner to ā, so C ′ := (ā). C ′ does
not have QRAT on ā w.r.t. the new ψ (which now contains
(b∨x∨c), but no longer has (ā∨x∨c)). In this case the outer
formula F := (b). Although F is small, it can be almost as
large as ψ in the worst case. Now, the Skolem function fa(U)
will be – with eval(F ) replaced by fb1(U) and pol(a) by ⊥:

fa(U) := if(fb1(U)) then⊥ else fa1(U)

The fourth step concerns the removal of (a∨ b) using pivot
a. This step is practically the same as the first step. Now
last[a] = a1, so we compute for Skolem function fa1(U):

fa1(U) := if(fb1(U)) then fa2(U) else>

In the fifth step, C := (b∨ x∨ c), which was added in step
two, is removed. Again, the literals x and c are inner to b.
This results in C ′ := (b). In contrast to step three, this C ′ has
QRAT on b w.r.t. the current ψ because ψ no longer contains
any clause with literal b̄.

fb1(U) := if(⊥) then fb2(U) else>

Finally, the last clause (x̄∨ c̄) is removed with pivot c̄. The
Skolem function fc(U) will be:

fc(U) := if(¬x) then fc1(U) else⊥

After the QRAT proof has been validated, we call
finishSkolem which does the following assignments:
fa2(U) := fb2(U) := fc1(U) := >. Using these Skolem func-
tions, we can set the earlier Skolem functions to fa(U) := ⊥,
fb(U) := >, and fc(U) := ¬x.

VI. IMPLEMENTATION, OPTIMIZATION AND VALIDATION

We enhanced our QRAT checking tool, called QRAT-trim,
with Skolem function extraction capabilities2. The Skolem
functions can be emitted as a propositional formula in DI-
MACS format or as an and-inverter-graph in AIGER format.
This section describes some details about our implementation,
optimizations and validation of Skolem function extraction.

A. Reducing the Size of the Outer Formula

The outer formula computed in line 7 of the addSkolem
procedure (Fig. 2) is typically much larger than necessary and
consequently makes Skolem functions larger than necessary. In
order to produce smaller Skolem functions, we implemented
the following optimization (using the notation in addSkolem):
For all D ∈ ψ with l̄ ∈ D, we compute the outer resolvent
R = O(Π, D, l̄) ∪ C ′. We check whether ALA(ϕ,R) is a
tautology and store all O(Π, D, l̄) for which the corresponding
R is not a tautology. The alternative outer formula becomes
the conjunction of these O(Π, D, l̄) together with the negation
of C ′ \ {l}.

B. Value of Final Skolem Functions

We presented finishSkolem such that it assigns all Skolem
functions flast[x](U) := >. However, for some variables,
flast[x](U) := ⊥ is much more effective. We observed that
the best truth value for final Skolem functions flast[x] is based
on the polarity literal x or x̄ that was a pivot for a QRAT
check. For some variables x (typically a few hundred for each
benchmark), there are QRAT checks with literal x as a pivot,
but no QRAT checks with literal x̄ as pivot (or the other way
around). By assigning flast[x](U) := > (or flast[x](U) := ⊥,
respectively), and apply simplification, we obtain the Skolem
functions fx(U) := > (or fx(U) := ⊥, respectively).

C. Validation of Skolem Functions

Validating a set of Skolem functions consists of two checks.
If both checks succeeds, the set of Skolem functions is valid.
Let F be a set of Skolem functions for a QBF formula Π.ψ.
The first check consists of substituting the existential variables
in ψ by all the skolem functions in F . The resulting formula
is negated and checked by a SAT solver to be unsatisfiable.

The second check uses the AIG representation of the
Skolem functions and Π to check that no input gate gi

2The QRAT-trim version with Skolem function extraction is available on
http://www.cs.utexas.edu/∼marijn/skolem/ for reviewing purposes and will be
made open source if the paper is accepted.

http://www.cs.utexas.edu/~marijn/skolem/


(universal variable) influences the truth value of output gate go
(existential variable) with gi >Π go. So no universal variable
x can influence the truth of an inner existential variable.

Apart from implementing a tool that extracts Skolem func-
tions from a QRAT proof, we also implemented a tool that
checks whether the Skolem functions are correct. A tool, called
CertCheck [21], has the same functionality but uses a more
strict check for the second part, i.e, whether the truth of no
existential variable x depends on the truth value of any variable
(also existential) inner to x. This check is too restrictive to
validate our Skolem functions.

Example 2. Consider the formula ∃a∀b∃c.(a∨b∨c)∧(ā∨c̄). A
possible QRAT proof for this formula removes first (a∨ b∨c)
with pivot c and afterwards (ā∨ c̄) with pivot ā. The latter is
allowed because after removing (a∨b∨c) the prefix collapses
to ∃a, c. Our procedure for extracting Skolem functions can
result in fa(U) = ¬fc(U) and fc(U) = > (depending on
which optimizations are used). Although the Skolem function
for a depends on the Skolem function for c which is inner to a,
the Skolem functions are correct because the Skolem function
of a does not depend on a universal variable inner to a.

Our validation tool called cheskol uses the less restrictive
dependency check and emits the result of substitution and
negation as a formula in DIMACS format (after Tseitin
encoding), the typical input format for SAT solvers.

VII. EXPERIMENTAL EVALUATION

At the moment, our preprocessor bloqqer is the only tool
able to produce QRAT proofs. As it is not a complete solver,
we consider the true formulas of the benchmark suite from
QBF Eval 12 which can be solved by bloqqer. We showed
in earlier work [12] that bloqqer with and without QRAT
proof logging solves the same instances. In the following, we
evaluate how our Skolem function extraction algorithm per-
forms on the formulas for which QRAT proofs are available.
Table II shows the results of our Skolem function extraction
tool, i.e., a modified version of QRAT-trim. We converted all
our proofs to the QBC format in order to make a comparison
with other tools more clear. Notice that the extracted Skolem
functions are typically smaller than the used QRAT proofs. We
validated our Skolem functions using cheskol which checks
the dependencies and computes whether the Skolem functions
imply the formula using the SAT solver lingeling [?].

Janota et al. [19] restricted bloqqer such that it is able
to produce resolution (RES) proofs. However, several prepro-
cessing techniques are not supported by that approach. As a
consequence, their modified version of bloqqer solves less
formulas (only 22 out of 32). If a formula cannot be solved by
bloqqer they use the solver depQBF to compute a resolution
proof of the simplified formula. They merge the certificate
(resolution proof) obtained from depQBF with the partial cer-
tificate obtained from their bloqqer. The results of resolution-
based approaches, our approach and some older tools [15],
[16], [14] that are shown in Table III. The only tool that
has comparable performance compared to our bloqqer+QRAT

TABLE II
STATISTICS OF EXTRACTING SKOLEM FUNCTIONS FROM QRAT PROOFS

PRODUCED BY BLOQQER ON QBF EVAL 12 BENCHMARKS.

.

formula sol-t ext-t tr-s ch-t qbc-s
c3 BMC p1 k2 1.08 2.10 1777 0.04 71
counter 8 0.39 0.38 266 0.07 37
itc-b13-fixpoint-8 16.32 75.53 124969 337.80 14756
k branch n-16 6.12 137.40 13127 7.14 1296
k branch n-7 3.71 25.33 25449 337.41 7467
k d4 n-10 1.08 3.23 5688 31.45 1988
k d4 n-11 1.22 3.97 6401 42.20 2244
k d4 n-14 1.58 7.36 9379 25.05 3158
k d4 n-15 1.75 8.78 10536 86.55 3459
k d4 n-20 2.53 18.94 16637 94.76 4885
k d4 n-21 2.75 22.08 18442 140.58 5296
k dum n-10 0.17 0.42 262 0.06 62
k dum n-11 0.23 0.49 335 0.07 74
k dum n-12 0.26 0.47 342 0.07 63
k dum n-16 0.26 0.60 432 0.09 95
k dum n-20 0.33 0.85 657 0.18 158
k dum n-21 0.44 0.93 761 0.32 204
lights3 021 1 022 0.18 0.46 253 0.09 54
lights3 021 1 033 0.23 0.41 388 0.07 47
lights3 035 1 059 0.39 0.70 639 0.34 111
rankfunc0 unsigned 64 1.70 7.55 3244 36.69 4985
rankfunc16 unsigned 16 0.33 1.42 783 0.83 342
rankfunc24 signed 32 0.56 1.82 1049 10.37 902
rankfunc27 unsigned 32 0.44 0.80 1446 1.90 569
rankfunc52 signed 64 1.80 9.23 3652 363.51 5058
s3330 d2 s 10.60 19.23 122569 3.59 798
stmt137 903 911 0.39 0.54 1037 0.27 112
stmt1 629 630 0.72 1.20 1671 0.74 187
stmt17 99 98 1.22 2.69 3388 2.19 373
stmt27 584 603 0.42 0.63 975 0.27 132
stmt27 946 955 0.39 0.53 977 0.32 113
stmt41 118 131 0.36 0.52 774 0.68 166
sol-t/ext-t/ch-t: solving/extraction/checking time (sec)
tr-s/qbc-s: size of QRAT file/qbc file (kilobyte)

approach is bloqqer+RES+depQBF — although it cannot
solve four of the harder benchmarks in the test suite.

A. Comparing the Size of Skolem Functions

If all preprocessing techniques are turned on, the average
size of the Skolem functions produced by bloqqer+QRAT
is larger than those from bloqqer+RES+depQBF. Recall that
bloqqer+RES+depQBF does not support several preprocess-
ing techniques. Consequently, unsupported techniques such
as covered clause elimination (QCCE) [23] are turned off.
Although bloqqer+QRAT supports QCCE, using it has a
negative impact on the size of Skolem functions. On harder
benchmarks, the Skolem functions are about four times larger
due to this technique. Hence, turning QCCE off reduces the
size of Skolem functions significantly — at the cost of solving
one formula less (s3330 d2 s).

For a fair comparison between the size of Skolem func-
tions produced by both approaches, we turn off QCCE for
bloqqer+QRAT as done by bloqqer+RES+depQBF. The AIG
files of the bloqqer+QRAT approach are converted into QBC
certificates to have the same file format. The scatter plot
shown in Fig. 4 illustrates that the Skolem functions ex-
tracted by bloqqer+QRAT are smaller than those produced by
bloqqer+RES+depQBF, especially for the harder benchmarks.



TABLE III
RESULTS OF SKOLEM FUNCTION PRODUCING TOOLS ON QBF EVAL 12

solver sol-# sol-t ch-# ch-t cer-s
bloqqer+QRAT 32 1 32 47 1851
bloqqer+RES 22 1 22 1 861
bloqqer+RES+depQBF 28 113 27 13 1040
depQBF 2 843 2 1 224
ebdd 15 491 7 118 409479
squolem 16 465 16 2 382
sKizzo 23 275 23 1 108750
sol-#: # solved formulas, sol-t: avg. solving time (s),
ch-#: checked certificates, ch-t: avg. checking time (s)
cer-s: avg. certificate size (kilobyte)

VIII. CONCLUSION AND FUTURE WORK

The QRAT proof system is the first framework that allows
verification of all preprocessing techniques for QBFs. We
developed an algorithm that extracts Skolem functions of
QRAT proofs. Hence, the techniques presented in this paper
allow us to obtain Skolem functions for all QBF preprocessing
techniques. Moreover, these Skolem functions are smaller than
those produced by alternative approaches – a very favorable
property for many synthesis applications.

We expect that the produced Skolem functions can be
further reduced in size: we applied the circuit simplification
tool ABC [24] on the AIGs representing the set of Skolem
functions and noticed a significant reduction. However, the
simplified Skolem functions are not necessarily valid, as ABC
is not aware of the dependency restrictions. In future, we want
to consider Skolem function reduction by circuit simplification
while taking into account the dependencies.

ACKNOWLEDGEMENTS

This work was supported by the Austrian Science Fund
(FWF) through the national research network RiSE (S11408-
N23), Vienna Science and Technology Fund (WWTF) under
grant ICT10-018, DARPA contract number N66001-10-2-4087
and National Science Foundation grant no. CCF-1153558.

REFERENCES

[1] R. Bloem, R. Könighofer, and M. Seidl, “Sat-based synthesis methods
for safety specs,” in VMCAI, ser. LNCS, vol. 8318. Springer, 2014.

[2] M. Benedetti and H. Mangassarian, “Qbf-based formal verification:
Experience and perspectives,” JSAT, vol. 5, no. 1-4, pp. 133–191, 2008.

[3] H. Kleine Büning and U. Bubeck, “Theory of Quantified Boolean
Formulas,” in Handbook of Satisfiability, 2009.

[4] C. Ansótegui, C. P. Gomes, and B. Selman, “The achilles’ heel of qbf,”
in AAAI. AAAI Press / The MIT Press, 2005, pp. 275–281.

[5] H. Kleine Büning, K. Subramani, and X. Zhao, “Boolean functions as
models for quantified boolean formulas,” J. Aut. Reas., vol. 39, no. 1,
2007.

[6] E. Giunchiglia, P. Marin, and M. Narizzano, “Reasoning with quantified
boolean formulas,” in Handbook of Satisfiability. IOS Press, 2009, vol.
185, pp. 761–780.

[7] V. Balabanov and J.-H. R. Jiang, “Resolution Proofs and Skolem
Functions in QBF Evaluation and Applications,” in CAV, ser. LNCS,
vol. 6806. Springer, 2011, pp. 149–164.

 100

 1000

 10000

 100  1000  10000

si
ze

 o
f Q

BC
 S

ko
le

m
 fu

nc
tio

ns
 o

f b
lo

qq
er

 +
 R

ES
 +

 D
ep

Q
BF

size of QBC Skolem functions of bloqqer + QRAT

Fig. 4. Comparison between the size (in kilobyte) of QBC Skolem functions
produced by the bloqqer+QRAT and bloqqer+RES+depQBF approaches
on QBF Eval 2012 benchmarks. Above the line means that bloqqer+QRAT
produces smaller files. Unsolved formulas are shown as a 20,000 kb file.

[8] A. Goultiaeva, A. Van Gelder, and F. Bacchus, “A uniform approach for
generating proofs and strategies for both true and false qbf formulas,”
in IJCAI. IJCAI/AAAI, 2011, pp. 546–553.

[9] A. Biere, “Resolve and expand,” in SAT (Selected Papers), ser. LNCS,
vol. 3542. Springer, 2004, pp. 59–70.

[10] A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination for
QBF,” in CADE 2011, ser. LNCS, vol. 6803. Springer, 2011.

[11] M. Janota and J. Marques-Silva, “On propositional qbf expansions and
q-resolution,” in SAT, ser. LNCS, vol. 7962. Springer, 2013, pp. 67–82.

[12] M. J. H. Heule, M. Seidl, and A. Biere, “A Unified Proof System for
QBF Preprocessing,” in accepted for IJCAR 2014. Springer, 2014.

[13] M. J. H. Heule, M. Järvisalo, and A. Biere, “Clause elimination
procedures for CNF formulas,” in LPAR-17, ser. LNCS, vol. 6397.
Springer, 2010, pp. 357–371.

[14] M. Benedetti, “Skizzo: A suite to evaluate and certify QBFs,” in CADE-
20, ser. LNCS, vol. 3632. Springer, 2005, pp. 369–376.

[15] T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. Wintersteiger, “A first
step towards a unified proof checker for QBF,” in SAT 2007, ser. LNCS.
Springer, 2007, vol. 4501, pp. 201–214.

[16] T. Jussila, C. Sinz, and A. Biere, “Extended resolution proofs for
symbolic sat solving with quantification,” in SAT, ser. LNCS, A. Biere
and C. P. Gomes, Eds., vol. 4121. Springer, 2006, pp. 54–60.

[17] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with Counterexample Guided Refinement,” in SAT, ser. LNCS,
vol. 7317. Springer, 2012.

[18] R. Könighofer and M. Seidl, “Partial witnesses from preprocessed
quantified boolean formulas,” in DATE. IEEE, 2014, pp. 1–6.

[19] M. Janota, R. Grigore, and J. Marques-Silva, “On QBF Proofs and
Preprocessing,” in LPAR, ser. LNCS, vol. 8312. Springer, 2013.

[20] M. Järvisalo, M. J. H. Heule, and A. Biere, “Inprocessing rules,” in
IJCAR, ser. LNCS, vol. 7364. Springer, 2012, pp. 355–370.

[21] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere, “Resolution-
Based Certificate Extraction for QBF,” in SAT 2012, ser. LNCS, vol.
7317, 2012.

[22] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[23] M. J. H. Heule, M. Järvisalo, and A. Biere, “Covered clause elimination,”

in LPAR-17-short, ser. EPiC Series, A. Voronkov, G. Sutcliffe, M. Baaz,
and C. Fermüller, Eds., vol. 13. EasyChair, 2013, pp. 41–46.

[24] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification. http://www.eecs.berkeley.edu/
∼alanmi/abc/.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

